
AirPlanes: Accurate Plane Estimation via 3D-Consistent Embeddings
Supplementary Material

Jamie Watson1,3 Filippo Aleotti1 Mohamed Sayed1 Zawar Qureshi1

Oisin Mac Aodha2 Gabriel Brostow1,3 Michael Firman1 Sara Vicente1
1Niantic 2University of Edinburgh 3UCL

https://nianticlabs.github.io/airplanes/

Contents

A. Additional results 1
A.1. Full geometry metrics . . . . . . . . . . . . 1
A.2. Results using PlanarRecon evaluation code . 1
A.3. Ablation of the embedding dimension . . . . 2
A.4. Scalability of meanshift clustering to large

scenes . . . . . . . . . . . . . . . . . . . . 2
A.5. Qualitative results on ScanNetV2 . . . . . . 2

B. Additional implementation details 6
B.1. Depth prediction and geometry reconstruction 6
B.2. Networks for planar masks and 2D embeddings 6
B.3. Online inference . . . . . . . . . . . . . . . 6

C. Implementation details for the baselines 6
C.1. 2D Semantic baseline . . . . . . . . . . . . 6
C.2. PlaneRecTR [6] + aggregation baseline . . . 6
C.3. Sequential RANSAC baseline . . . . . . . . 7
C.4. Speed comparison with PlanarRecon . . . . 7

D. Additional evaluation details 7
D.1. Our dataset split . . . . . . . . . . . . . . . 7
D.2. Planar metrics . . . . . . . . . . . . . . . . 7

A. Additional results
A.1. Full geometry metrics

In Table A1 we display scores from the main paper with
the complete set of geometry metrics from [4]. As men-
tioned in the paper, our geometry scores are comparable
with SR [5] + RANSAC, which uses the same underlying
geometry. FineRecon [7] + RANSAC is a more computa-
tionally expensive method which scores better in the com-
pletion and recall metrics.

A.2. Results using PlanarRecon evaluation code

Test split we use in the main paper. We train and eval-
uate on ScanNetV2 [1], because [3] provided ground truth

plane annotations for most of it. However, plane annota-
tions are unavailable for the ScanNetV2 test set. For our
main paper results we therefore split the official Scan-
NetV2 validation set into new plane evaluation validation
and test splits, dubbed valplanes and testplanes, with 80 and
100 scenes respectively. For a fair comparison with prior
work, in the main paper we re-evaluate baselines on our
new test split, using the methodology as described in the
main paper e.g., removing unseen voxels to avoid penaliz-
ing methods such as [4].

Evaluation from [12]. For full transparency, we addition-
ally adapted the evaluation code from [12] and evaluated a
selection of models using their code and their data splits.
Table A2 shows these results, i.e., models evaluated on the
evaluation code and dataset split from [12]. This code uses
the full ScanNetV2 validation set of 312 scenes for the test
set. We make three observations from these results:
1. In some cases, the scores presented in the paper [12]

do not match the scores we achieved from their online
code implementation1. We highlight these discrepancies
in Table A2. For example, the segmentation results for
the ‘NeuralRecon + RANSAC’ baseline result in supe-
rior scores using the author’s code compared to those in
the paper.

2. Our RANSAC implementation is slightly better than but
generally comparable to the results from [12]’s code,
e.g., comparing the row ‘NeuralRecon + RANSAC (Re-
running [12]’s GitHub code)’ vs. the row NeuralRecon
+ RANSAC (Our RANSAC implementation)’.

3. Our method is the top-performing method across all met-
rics using their benchmarking protocol. For example
we score 2.713 VOI vs the closest competitor (Neu-
ralRecon + RANSAC) which scores 3.512. For trans-
parency we note though that the hyperparameters of our
method were tuned on valplanes, the scenes from which
are present in the test set used in the Table A2 scores.

1https://github.com/neu-vi/PlanarRecon
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Geometry Segmentation Planar
comp ↓ acc ↓ chamfer↓ prec↑ rec↑ f1 ↑ voi↓ ri↑ sc↑ fidelity ↓ accuracy↓ chamfer↓

PlaneRecTR [6] + aggregation 5.71 11.92 8.82 32.32 64.31 42.53 4.028 0.924 0.268 22.58 15.71 19.14
Atlas [4] † + RANSAC 19.98 5.31 12.65 65.26 46.74 53.71 2.868 0.932 0.465 22.60 17.71 20.16
NeuralRecon [8] + RANSAC 10.16 7.84 9.00 44.09 50.80 46.91 3.176 0.929 0.391 16.76 13.08 14.92
FineRecon [7] + RANSAC 4.59 6.53 5.56 59.00 70.55 64.10 2.377 0.950 0.531 7.74 11.71 9.72
SR [5] + RANSAC 6.09 4.71 5.40 70.31 61.38 65.45 2.507 0.946 0.515 9.42 10.13 9.78
PlanarRecon [12] 12.29 7.49 9.89 47.39 40.50 43.47 3.201 0.919 0.405 18.86 16.21 17.53
Ours 5.74 4.86 5.30 67.79 62.42 64.92 2.268 0.957 0.568 8.76 7.98 8.37

Table A1. ScanNetV2 evaluation. These results are equivalent to Table 1 in the main paper but we additionally report the complete set of
geometry metrics from [4].

The results in our main paper are reported on a held out
test set. Nonetheless, the difference in scores between
our method and the closest competitors here are large.

A.3. Ablation of the embedding dimension

An important component of our method is the MLP that
learns 3D consistent plane embeddings. For all results in the
main paper, we use an embedding space with 3 dimensions.
In Table A3 we compare results using different dimensions
for the embedding space. The results show that the em-
bedding MLP and resulting performance is not strongly im-
pacted by the number of dimensions, meaning we are robust
to this hyperparameter. We note though that our method
performs slightly better for a higher number of dimensions
at the cost of a higher time to train the MLP.

A.4. Scalability of meanshift clustering to large
scenes

To evaluate the scalability of our current clustering ap-
proach on large scenes, we created a large 3D scene by
concatenating all 100 test scenes from ScanNet. This cre-
ates an approx. 2500 square meter scene. The figure below
shows a small portion of this scene. Running our meanshift
based clustering on this large scene takes 360ms, indicating
our clustering can cope with reasonably large scenes. We
observed that the number of anchors does not need to be in-
creased linearly with the size of the scene, as the meanshift
step is followed by connected components.

A.5. Qualitative results on ScanNetV2

Figs. A1 and A2 illustrate further qualitative comparisons
between our method, our Sequential RANSAC implemen-
tation, and PlanarRecon [12]. We again note how our ap-
proach has closer fidelity to the ground truth compared to
the other methods. In the same figures we also show com-
parisons between our method and results from other abla-
tions and baselines from main paper.



Geometry Segmentation
comp ↓ acc ↓ prec ↑ rec ↑ fscore ↑ voi↓ ri↑ sc↑

PlanarRecon Scores as published in [12] 0.154 0.105 0.398 0.355 0.372 3.622 0.897 0.248
PlanarRecon Re-running [12]’s GitHub code 0.147 0.100 0.404 0.360 0.378 3.598 0.897 0.250
NeuralRecon + RANSAC Scores as published in [12] 0.144 0.128 0.306 0.296 0.296 8.087 0.828 0.066
NeuralRecon + RANSAC Re-running [12]’s GitHub code 0.143 0.119 0.317 0.278 0.294 4.405 0.902 0.212
NeuralRecon + RANSAC Our RANSAC implementation 0.126 0.094 0.396 0.435 0.410 3.512 0.917 0.237
Ours Our method 0.072 0.067 0.626 0.554 0.586 2.713 0.935 0.352

Table A2. Results using PlanarRecon’s [12] evaluation code on the entire validation set. We display
scores reported in the original paper from [12] and the scores we obtain when running the public code from [12] . Finally, we

also report our implementation of sequential RANSAC and our method . All the scores here are computed using the 312 validation
sequences defined in [1], using the benchmark code provided by [12]. Best and second best overall scores are highlighted in the table.
Some results are highlighted in red to draw attention to cases with the largest discrepancies between the numbers reported in [12] and the
results from running the public code.

Dimension of
embedding space

Geometry Segmentation Planar
chamfer ↓ f1 ↑ voi↓ ri↑ sc↑ fidelity↓ accuracy↓ chamfer↓

2 0.054 0.645 2.288 0.957 0.566 8.74 8.02 8.38
3← in main paper 0.053 0.649 2.268 0.957 0.568 8.76 7.98 8.37
4 0.053 0.649 2.257 0.958 0.572 8.59 8.02 8.31
5 0.053 0.650 2.253 0.958 0.574 8.60 7.82 8.21

Table A3. Embedding dimension ablation. We compare the performance of our method when using a different number of dimensions
for the MLP embedding space.



Ground Truth Ours SR + RANSAC PlanarRecon
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Figure A1. Comparisons with more baselines and ablations on ScanNetV2.
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Figure A2. Comparisons with more baselines and ablations on ScanNetV2.



B. Additional implementation details
The input image resolution for all our networks is 512×384
and the output resolution for all the per-pixel 2D networks
is 256× 192.

B.1. Depth prediction and geometry reconstruction

We use the depth network from SimpleRecon [5] utilizing
the publicly available version of the authors’ implementa-
tion. This depth method uses a plane sweep stereo cost
volume and a U-Net++ [14] to regularize the cost volume
output using features from an image prior encoder to pro-
duce the final depth map. A shallow feature extractor cap-
tures features from the target frame and frames from source
views. The features from the source views are warped to
match the viewpoint of the target frame at various hypoth-
esis depth planes using known camera intrinsics and ex-
trinsics. Subsequently, a cost volume is formed by pass-
ing these features through a learned Multi-Layer Perceptron
(MLP) as proposed in [5]. The resulting cost volume, along
with deep image features extracted from the target frame,
is then fed into a cost volume encoder for additional refine-
ment. This is followed by a decoder, which adheres to the
architecture introduced in [2, 10, 11].

We train for 110k steps with a batch size of 16 on two
Nvidia A100s GPUs, with a learning rate drop at 60k and
70k steps. We select a model checkpoint after 100k steps
based on the validation set.

B.2. Networks for planar masks and 2D embeddings

We use two small skip-decoders from [2] to predict planar
masks and 2D embeddings. The input to these decoders are
features from the SimpleRecon [5] depth backbone, specif-
ically the output of the cost volume and image-prior en-
coders. We weight the 2D push/pull embeddings and pla-
nar mask losses equally. We use the same training schedule
and hyperparameters as the depth network, but we only train
the planar mask and 2D embeddings decoders and keep the
depth encoders’ weights fixed. We pick the best checkpoint
based on the 2D embeddings loss on the validation set.

B.3. Online inference

When running the online version of our method, we use the
mean-shift clustering implementation of [13]. The cluster-
ing is based on the embeddings only (i.e., no normals or
offsets are used) and uses a bandwidth of 0.25. After con-
vergence, we use the same two post-processing steps that
are used for our RANSAC implementation, i.e., connected
components to separate non-contiguous planes and removal
of planes with fewer then 100 vertices.

As discussed in the paper, we run a simple Hungarian
matching algorithm to match planes across time, to give
color consistency in our visualizations. We compute an av-
erage plane embedding for each plane by averaging all the

embeddings for points assigned to that plane. The cost ma-
trix for the assignment problem is given by the euclidean
distance between the average plane embeddings, where as-
signments are additionally set as invalid if: (a) the distance
between the two plane centroids is higher than 2 meters,
(b) the euclidean distance between normals is higher than
1, and (c) the number of vertices assigned to the plane goes
down by more than 66%. All these thresholds are empiri-
cally chosen.

Note that more sophisticated algorithms could have been
used for the matching step. For example, the clustering step
could be informed by previous plane assignments and use
those to initialize the clustering algorithm.

C. Implementation details for the baselines

C.1. 2D Semantic baseline

Our 2D semantic predictor has been trained to predict se-
mantic maps given a single input image. Features are ex-
tracted from the image with an EfficientNet v2 [9] backbone
and passed to a small decoder with skip connection, similar
to the one used for estimating planar masks. The network
predicts 20 classes and we use a cross entropy loss to train
it. At test time, pixel-wise class probabilities predicted for
each frame are fused into the TSDF volume, using depth
maps from an off-the-shelf SimpleRecon model [5]. After
this step, the final class for each voxel is selected by taking
the class with highest probability. For completeness, the
chosen classes are reported in Table A4.

wall floor cabinet bed chair
sofa table door window bookshelf

picture counter desk curtain refrigerator
shower curtain toilet sink bathtub otherfurniture

Table A4. Semantic classes. Semantic classes used to train the
2D semantic predictor.

C.2. PlaneRecTR [6] + aggregation baseline

PlaneRecTR [6] is a state-of-the-art method for single im-
age 3D plane estimation. In order to be compared with the
other methods for the task of plane estimation for an entire
scene, we aggregate frame predictions into a single coher-
ent representation. We follow a procedure similar to the one
detailed in PlanarRecon [12] for their single frame base-
line comparisons. A plane for the current frame is matched
and aggregated with a world plane if: (a) the angle between
the plane normals is smaller than 8.1 degrees; (b) the ab-
solute difference between plane offsets is smaller than 0.5,
and; (c) the absolute difference between plane centroids is
smaller than 0.5 meters. If several world planes satisfy this
condition, we choose the plane with smaller angle between
the normals as the matching plane. After aggregation, we



update the world plane parameters (normal, offset, and cen-
troid) using a running average. All thresholds were tuned
on the validation set.

C.3. Sequential RANSAC baseline

Implementation details. Our sequential RANSAC base-
line implementation consists of the the following steps: We
first sample N = 1000 points from the mesh, where each
of these is a candidate hypothesis. For each hypothesis, we
estimate the plane equation using the point and its associ-
ated mesh normal. We then count the number of inlying
vertices for each hypothesis. A point is considered an inlier
if: (i) the dot product between its normal and the normal
of the sampled point is > 0.8 and (ii) the distance from the
point to the plane hypothesis is < 0.3m. We then select the
plane hypothesis with the most inliers, and remove these
inliers from the mesh. We then repeat all these steps until
either: (i) we have found more than 100 planes or (ii) the
largest plane we have found has fewer than 100 inliers. As
in our method, for this RANSAC baseline, we finally run a
connected components step at the end to divide up planes
which are not contiguous on the mesh.

Differences to [12]. We compare our implementation of
Sequential RANSAC on meshes against the variant used
in [12]. A qualitative comparison can be seen in Fig. A3.
We also compare the versions numerically in Table A2.

C.4. Speed comparison with PlanarRecon

PlanarRecon [12] reports a running time of 40ms per
keyframe on a NVIDIA V100 GPU, while our method runs
in 152ms per keyframe. However, fairly comparing speeds
is difficult. PlanarRecon constructs a scene a fragment at
a time, where a fragment is composed of 9 keyframes. In
practice, this means that PlanarRecon only updates the ge-
ometry and plane estimate every 9 keyframes, while we up-
date both for every single keyframe. We have timed Planar-
Recon on a NVIDIA T4 GPU and got the following break-
down of average timings for a 9 keyframes fragment:

Component Running time in ms
Fragment net 328.8
Tracking 183.2
Features 117.2
Mean shift 29.0
Total time for a fragment 658.1

D. Additional evaluation details
D.1. Our dataset split

Our test set testplaneswas formed by selecting 100 unique
scenes (i.e., only including those with suffixes 00) from
the official ScanNetV2 validation set, since the test set does

(a) Our RANSAC baseline

(b) RANSAC baseline from [12]

Figure A3. RANSAC comparison. Our RANSAC baseline (top)
produces more accurate planes compared with the RANSAC base-
line from [12] (bottom). See also Table A2. Both RANSAC
methods are run using the same input mesh, which in this case
is from [8]. Note the speckled artefacts in (b) are due to some ex-
traneous faces in the mesh from [12], and do not impact the scores
as we only evaluate the vertex positions not orientations.

not have the necessary ground truth for plane evaluation.
We select those scenes by choosing the scans with the least
amount of missing or broken camera poses. We use the rest
of the validation set as a separate validation set for tuning
and checkpoint selection. The resulting scans selected for
testplanesare listed in Table A5. We will release our code for
evaluation on this test split to ease further comparison by
future researchers.

D.2. Planar metrics

Before computing the planar metrics, we use a similar
pre-processing step to the one used for geometric evalua-
tion. We first sample 200,000 points from the ground truth
and predicted meshes and compute metrics on those point
clouds. We then apply a visibility mask to the point clouds
and we mask out the 3D points sampled on faces that con-
nect two or more planes. In contrast with the geometry met-
rics, we apply the visibility mask before computing the fi-
delity metric.
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