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1 Frequently asked questions
You give a lot of numbers, and the audio/haptic app worked better in some ways,
but on average is it better? The final study included 50 participants. The null-hypothesis
would state that the two final apps have the same effectiveness across that population. But the
experiment showed that the choice of guidance app actually does make a difference. Yes, there
are users who make good or even great scans with the visual app. But more users are better off
with the audio/haptic interface in terms of engagement (which contains several criteria), and in
terms of the quality of the resulting scan. Statistical significance tests are designed specifically to
measure such situations (and we are happy to present the numbers in Bayesian terms instead of
Frequentist statistics if needed). To prevent carryover effects, we used a between-subjects design.
Visual inspections and ANCOVA/MANCOVA analyses were performed before analyzing specific
variables (e.g. engagement) to reduce the chance of Type I errors. We used a validated survey to
measure engagement (UES-SF) [35]. See Section 13 for full statistical test results.

Did people really enjoy the audio/haptic app more than the visual app? Besides the
quantitative engagement results, we received many positive comments about the audio and haptics
in our scanning apps, some of which are captured by the pilot study qualitative analysis in Section 9,
and the anonymous comments from the final study in Section 14. For many people, it feels satisfying.

You were motivated to improve safety by using audio/haptic instead of visual guidance,
but I don’t see safety-related results. Although we initially set out to improve the safety of
scanning, we did not want to put any of our participants in significant danger in order to measure it.
Instead, we measured safety proxies (e.g. stress) during a challenging—but not dangerous—scanning
task. As shown in Section 13, we did not find any significant results with respect to these proxies,
despite measuring stress in multiple ways.

Why don’t the reconstructed meshes look better? The meshes shown in the main paper are
from single scans. In practice, multiple scans are often used to make reconstructions that capture
different weather and lighting conditions. By aggregating and aligning the meshes from different
scans, it is possible to compute a single overall and superior reconstruction, along with (non-visual)
characteristics that support other tasks such as relocalization, as shown in Google’s Maps Tiles API.
There are also advanced reconstruction methods (e.g. NERFs) that use priors and regularization,
but the design choices there are a separate area of research.

How are your scanning apps different from those on the market? We present a table
comparing our scanning apps with those on the market in Section 6.

What about scanning POIs that aren’t the Agatha Christie Memorial? What if I
can’t go 360° around the object I want to scan? As shown in the Video Figure, the current
application can be used to scan many other statues and objects you can walk in a circle around.
For objects that cannot be circled, like murals, the app’s Completion Guidance (see Section 5) could
easily be modified to require users to scan only 180° or less. The app could also be modified such
that users “follow” a moving Object Transform e.g. along a building’s facade or through an open
area. There was evidence users could track moving Object Transforms in our study, as we found that
users who encountered drift could identify the Transform’s drifted-to location (though intentional
moving/tracking would be communicated clearly to avoid frustration).
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Doesn’t scanning violate the privacy of strangers walking past? Yes, laws like GDPR
have successfully driven companies to anonymize footage of people’s faces and license plates that are
captured in public. For example, faces and plates are blurred out in Google StreetView. The same
is true for images in academic 3D reconstruction datasets. If the proposed approach were packaged
for wide-scale use, the resulting data should go through an anonymization (face-blurring) pipeline,
such as the pipeline [24] used by Wayfarer (the app we used in the pilot). For this CHI paper, we
blurred all the faces in figures and videos using software and code from GitHub. This code does
occasionally detect and blur Agatha Christie’s face however.

2 Scanning Greyfriars Bobby: A user experience story
To clarify the idea of scanning, as well as motivate our app’s design, in this section we describe the
user experience of a fictional character, “Vanessa”. Vanessa uses a fictional scanning app, “Story
Scan”, which we imagined through combining various well-established visual scanning apps [15, 31,
13, 14, 27, 11, 30, 19, 32], as well as our own scanning app design. We illustrate this story in Figure
1 in the main paper.

When Vanessa first set foot in Edinburgh, she didn’t know much about the history of the
town. One look at the ominous castle lit up in the night sky, though, and her mind was
filled with medieval knights and bloody battles. A far cry from her small-town Canadian
home she knew and loved so well.

After a few weeks in the city, though, her classmate showed her a different side of
Edinburgh: One with a small, brave Skye Terrier, Greyfriars Bobby, who patrolled the
city, endeared its citizens, and guarded the grave of his owner for 14 years. The city so
loved its loyal pup, they commemorated him with a statue in a garden of flowers.

The garden quickly became one of Vanessa’s favourite spots. She wanted to share the tale
of Greyfriars Bobby with her family back home—and when she heard she could create a
virtual, 3D version of the statue and garden with the app, “Story Scan”, she immediately
downloaded it to her phone. The app allowed her to scan the area, add a virtual
storytelling-pup to the scene, and share the experience with anyone online.
Vanessa set out to complete her first scan.

Upon arrival, she was a bit unsure she was up to the task. People were scattered around
the park and she didn’t want them to think she was capturing footage of them—
even though Story Scan promised all footage from the scan would be anonymized. She
also had no idea what scanning entailed, and how she could create a virtual mesh that
actually looked good.

When she opened the app though, her fears were at least partially quelled. Through a
tutorial, she learned that all she needed to do was to slowly walk around the
statue in a circle while aiming the phone’s camera at the statue. Sounded easy
enough!

As she walked, she saw what looked like a transparent, green, bumpy terrain appearing
over the ground, flowers, and statue. She was focused on making the green mesh fit
more tightly on the statue, when suddenly, she collided with a tree. Stumbling a bit,
she looked over her shoulder to see if anyone had noticed. It seemed no one had, so she
jogged ahead, trying to keep her phone camera aimed at Bobby.
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After completing a full 360° of the statue, her virtual mesh appeared on-
screen. The first half of the statue looked fantastic: a detailed and realistic representa-
tion of Bobby. The second half though—the half where she was moving too fast to keep
her eyes on green mesh’s alignment—looked jagged and smeared. She guessed she would
have to scan once more, moving a bit more slowly—and making sure she didn’t run
into any trees!

3 Related Work: Reconstructing geometry from scans
As discussed in the main paper, we present a walk-through of smartphone-related scanning consid-
erations.

To compare the accuracy of various scanning systems, mesh reconstructions are needed. Almost
all reconstruction pipelines start with estimating camera pose. This usually requires image feature
extraction, feature matching, point triangulation, and a global optimization step. This can be done
offline as in SfM [39] or online as in SLAM [8]. It is helpful to have an inertial measurement unit
(IMU) [5], as in modern smartphones. Ideally, for accurate poses, images in a scan would balance
having sufficient visual overlap with sufficient inter-frame baseline. When no overlap exists or if
the images are featureless—like in images of a sidewalk or a plain wall—it becomes harder and
near impossible to estimate pose. While IMUs can help fill these gaps by feeding in information on
instantaneous acceleration and gyroscopic orientation, such dead reckoning will eventually lead to
camera pose drift.

With accurate camera pose, the next step is estimating dense geometry, usually represented
as meshes or point clouds. Conventionally, per-image depths are first estimated using Multi-View
Stereo (MVS). There, image similarity is used to triangulate points densely across images [40],
usually with the help of clever sampling [3] or CNNs [12]. Depth sensors [9] can also provide per-
frame depth estimates with some confidence, as is in some iPhones. Depths can then be fused in
real-time and online using TSDF fusion [16] after which meshes representing the geometry of a scene
can be extracted via Marching Cubes [23]. Although tangential and purely a novel-view synthesis
method, a neural radiance field [26] can also provide geometry estimates with extra effort. For any
of these methods, the most accurate geometry is obtained with accurate poses, sufficient coverage
of the subject with many overlapping views (a 360 loop is preferred), blur-free images, good camera
baseline, and poses close enough to the subject. The last point is especially important for low power
depth sensors on consumer devices outdoors; if the camera is too far, the sensor would not be able
to estimate depth accurately.

Meshes are considered accurate when they contain all the geometry in the scene, and do not
contain any extraneous geometry not in the scene. Ideally, straight walls in the scene would not
be curved, and fine detail would be present without noise. A ground truth mesh or point cloud is
often required for mesh evaluation, usually obtained via professional-grade hardware with sufficient
time and expertise [18]. Mesh evaluation often involves sampling a dense point cloud of the mesh
under evaluation, and computing distances between a candidate mesh’s point cloud and the ground
truth [18]. Completeness (smaller is better in meters) and the thresholded ratio version recall (higher
is better) measure how much of a scene’s geometry is captured in the reconstruction. Accuracy
(counter-intuitively, smaller is better in meters) and the thresholded ratio version precision (higher
is better) measure the extent of extraneous geometry in the reconstruction. These are averaged
arithmetically in Chamfer Distance (CD) (smaller is better) and harmonically in F-score (higher is
better). The best reconstructions will maximize F-score and minimize CD. For example, if a user
neglects to capture images of a subject from a particular angle or if they are far enough such that
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a depth sensor performs poorly, then the reconstruction will have missing regions leading to large
completeness and CD distances and a low recall and F-score.

4 Scanning app conceptual design
Many popular apps with scanning features, including Snapchat, Pokémon Go, and Ingress, crowd-
source their scans from hundreds of thousands of non-expert users [36, 15]. As described in the
main paper, learning to scan well, however, is not a simple task, and non-expert users typically need
study facilitators or in-app feedback to help [33, 1, 44, 25]. Further, for our audio/haptic scanning
app (described later), users would need to learn to interpret the feedback signals, which may not
be intuitive as the majority of apps today are visual-first rather than audio/haptic-first [22, 2].
Thus, we utilized Jackson’s Theory of Conceptual Design, which aims to facilitate development of
straight-forward, easy-to-learn systems.

Below, we outline the conceptual design of our scanning guidance system, which includes the sys-
tem’s operational principles (OP) and concepts (C)—or the essential ideas we want to communicate
to users through our design [17]. We show our concept graph in Figure 1.

C: Augmented Reality (AR)1

• OP: The concept of having virtual content (e.g . characters, objects, sound effects) co-located
in the real-world.

C: Feature to Scan (abstract concept)

• C: Point of Interest (POI)2

– OP: A real-world object (e.g . statue) that could be incorporated into an AR experience.

• C: Object Transform

– OP: When a user identifies a POI to the system, the system estimates its position, orien-
tation and scale (i.e. the Object Transform), which allows the system to provide feedback
on the user’s scanning behaviour.

C: Scan

• OP: If the system obtains images and pose information (i.e. Scan information) from many
different angles around a POI, the system can reconstruct a virtual version (i.e. Mesh Recon-
struction) of the POI.

C: Mesh Reconstruction

• OP: The system can create a virtual version (Mesh Reconstruction) of a POI using information
from a scan. This mesh (often alongside many other meshes) can then be used to create
localised, persistent, and high-fidelity AR experiences.

In [17], Jackson describes how rapid prototyping and extensive user involvement are synergistic
with conceptual design. Thus, to improve upon our initial design, we gathered user feedback in a
pilot study, as described in the main paper. The results from the pilot user study heavily influenced
our final design.

1Note that because scanning apps are used to create AR experiences, we assume the user already understands this
concept. For the purposes of this study, we explain AR when onboarding the participant.

2Note that because scanning apps are used to scan POIs, we assume the user already understands this concept.
For the purposes of this study, we explain POIs when onboarding the participant.
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Figure 1: The concept graph for scanning, which can be described as follows: A Mesh Reconstruction
depends on having a Scan, which depends on having a Feature to Scan. Features to Scan can either
be Object Transforms or a general POIs. (Note that an Object Transform must be present to provide
feedback on users’ scanning behaviour, which is the purpose of the app in question.) The concept
of a POI depends on having the concept of AR. In the figure, italicised concepts are abstract [17].

5 Guidance algorithms
To guide users in the scanning task, we implemented the following algorithms: Distance Guidance
(Listing 1), Framing Guidance (Listing 2), Speed Guidance (Listing 3), and Completion Guidance
(Listing 4). The instances where the algorithms differ between the pilot study audio/haptic app,
full-scale study audio/haptic app, and the full-scale study visual app are labelled with square bracket
tags (e.g. [PILOT AUDIO/HAPTIC:]). We provide further Listings in other sections. For example,
our 3D bounding box algorithm is in Section 10, and our drift-reduction algorithm, “Landmark
Tracker”, is in the main paper.

Listing 1: Pseudo-code for our Distance Guidance (F1) algorithm.
1. User identifies the object they want to scan , which provides the system with the "Object

Transform" (i.e. position/scale/orientation of the object)
2. User starts the scan
3. Obtain the distance from the Object Transform to the camera , and set the "Ideal Distance" to

this value
a. (Note that in the user study , participants were told to start at a specific position)

4. Set the "Closest Ideal Distance" and "Furthest Ideal Distance" radii , where participants are
said to be within the ideal distance range (and will not be warned to move)

a. E.g. Set Closest Ideal Distance to Ideal Distance minus some preset "Buffer Distance" (e.g.
0.5m)

b. E.g. Set Furthest Ideal Distance to Ideal Distance plus the Buffer Distance
5. Set any other Guidance Feedback variables

a. [PILOT AUDIO/HAPTIC AND FULL AUDIO/HAPTIC :] Set the "Min Distance" and "Max Distance",
which are closer and further to the Object Transform than the "Closest" and "Furthest" ideal
distances respectively , and which represent the distances past which the maximum -strength

guidance occurs
b. [PILOT AUDIO/HAPTIC AND FULL AUDIO/HAPTIC :] Set the Lowest Volume , Highest Volume , Low Pass

Filter Max Frequency , and Low Pass Filter Min Frequency variables
c. [FULL AUDIO/HAPTIC :] Set the Default Pitch variable

6. [PILOT AUDIO/HAPTIC AND FULL AUDIO/HAPTIC :] Play music
b. IF the user is within the ideal distance range: Keep the music at the Highest Volume
ELSE:

i. Get the user ’s current distance from the Object transform
ii. IF the user is closer to the Object Transform than the Closest Ideal Distance:

1. Set the music volume by linearly interpolating between the Highest Volume & Lowest
Volume with respect to the user ’s current distance , and the Closest Ideal Distance & Min
Distance

2. Set the low pass filter cutoff frequency by linearly interpolating between the Min
Frequency & Max Frequency with respect to the user ’s current distance , and the Closest Ideal
Distance & Min Distance
ELSE:

1. Set the music volume by linearly interpolating between the Highest Volume & Lowest
Volume with respect to the user ’s current distance , and the Furthest Ideal Distance & Max
Distance
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2. Set the low pass filter cutoff frequency by linearly interpolating between the Min
Frequency & Max Frequency with respect to the user ’s current distance , and the Furthest
Ideal Distance & Max Distance

6. [FULL AUDIO/HAPTIC :] IF the user is within the ideal distance range: Keep the music at the
Default Pitch

ELSE IF the user is closer to the Object Transform than the Closest Ideal Distance:
a. Obtain a Pitch Value between 0 and 1 by linearly interpolating with respect to the user ’s
current distance , and the Closest Ideal Distance & Min Distance

b. Set the music pitch to 2^(-1 * Pitch Value)
ELSE:

a. Obtain Pitch Value between 0 and 1 by linearly interpolating with respect to the user ’s
current distance , and the Furthest Ideal Distance & Max Distance

b. Set the music pitch to 2^( Pitch Value)
6. [FULL VISUAL :] Generate an AR blue ring , "Track", centered around the Object Transform , which

has an inner radius of Closest Ideal Distance and outer radius of Furthest Ideal Distance
a. IF the user is within the ideal distance range , they will be within the Track

ELSE they will be outside the Track
7. Repeat Step 6 until the scan completes

Listing 2: Pseudo-code for our Framing Guidance (F2) algorithm.
1. User identifies the object they want to scan , which provides the system with the "Object

Transform" (i.e. position/scale/orientation of the object)
2. User starts the scan
3. IF the Object Transform is fully captured by the camera view:

a. Do not provide any Framing Guidance
ELSE:

a. Calculate how far away the camera angle is from the Object Transform (e.g. in degrees)
b. [PILOT AUDIO/HAPTIC :] Play a beeping noise that increasingly reverberates as the camera
angle increasingly points away from the Object Transform. Additionally , vibrate the phone at
a steady rate.

b. [FULL AUDIO/HAPTIC :] Vibrate the phone with increasing strength and frequency as the camera
angle increasingly points away

b. [FULL VISUAL :] Display on-screen arrows with increasing opacity as the camera angle
increasingly points away

4. Repeat step 3 until the scan completes

Listing 3: Pseudo-code for our Speed Guidance (F3) algorithm.
1. User identifies the object they want to scan , which provides the system with the "Object

Transform" (i.e. position/scale/orientation of the object)
2. User starts the scan
3. Set the "Maximum Speed" variable (e.g. 5 degrees/sec)
3. Store the most recent X (e.g. 5) number of angular velocities around the Object Transform (e.g

. by calculating the angular velocity over T milliseconds , e.g. 250ms)
4. IF the median velocity is greater than Maximum Speed:

a. [PILOT AUDIO/HAPTIC AND FULL AUDIO/HAPTIC :] Play an audio file with voiced feedback (e.g. "
Too fast !")

a. [FULL VISUAL :] Show an on -screen text warning (e.g. "Slow down")
5. Repeat Steps 3 and 4 until the scan completes

Listing 4: Pseudo-code for our Completion Guidance (F4) algorithm.
1. User identifies the object they want to scan , which provides the system with the "Object

Transform" (i.e. position/scale/orientation of the object)
2. User starts the scan
3. Set the Start Angle to the user ’s current angle in the horizontal plane around the Object

Transform
4. Set a number of "Checkpoints" around the Object Transform by dividing 360 degrees into X

number of parts (e.g. four parts would provide the Checkpoints: 90, 180, 270, 360 degrees)
5. IF the user ’s current angle is greater than the first Checkpoint:

a. Set the User ’s Direction to +1 and mark the first Checkpoint as complete
ELSE IF the user ’s current angle is less than -1 times the first Checkpoint

b. Set the User ’s Direction to -1 and mark the first Checkpoint as complete
c. Multiply all of the Checkpoints by -1

6. IF the User ’s Direction has been set:
a. IF the User ’s Direction is +1 AND the user ’s current angle is greater than the next
uncompleted Checkpoint: Set this Checkpoint as complete

ELSE IF the User ’s Direction is -1 AND the user ’s current angle is less than the next
uncompleted Checkpoint: Set this Checkpoint as complete
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7. IF all Checkpoints are complete:
a. Mark the scan as complete
b. [PILOT AUDIO/HAPTIC AND FULL AUDIO/HAPTIC :] Play an audio file with voiced feedback (e.g. "
You ’re done !") and process the scan

b. [FULL VISUAL :] Show on -screen feedback and process the scan
ELSE: Repeat Steps 5-7

6 Comparison of current scanning apps
Table 1 compares the guidance features and visualisations of various current scanning apps on the
market and our scanning apps. See the main paper for further descriptions of the scanning concept-
s/features, “Object Transform”, “Distance Guidance”, “Framing Guidance”, “Speed Guidance”, and
“Completion Guidance”.
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Table 1: Features of various commercial (or in-development) scanning apps, as well
as our final apps from the main paper.

Scanning app Currently
available?

Visualisation of
scanning

C1: Object
transform po-
sitioning (to
enable guid-
ance features)

F1: Distance
guidance

F2: Framing guid-
ance F3: Speed guidance

F4: Scan com-
pletion guid-
ance

Snap Custom
Landmarker
Creator [15]

Yes

Feature-points,
mesh or procedu-
rally generated
objects on physical
object

None None None None

Progress bar:
Minimum/ max-
imum number of
perspectives to
capture

Immersal [13] Yes Feature-points on
physical object None None None None None

Wayfarer [31] Yes

Darker
pixels/feature-
points disappear
when scanned

None None None Dynamic text ("Slow
down")

Static text
("Scans must
be longer than 20
secs")

Scaniverse [32] Yes Stripes disappear
when scanned None

Stripes do not
disappear if too
far

None
Dynamic text ("Slow
down","Avoid fast
turns")

None

Pokemon Go
Pokestop Scan-
ning [11]

Yes None None None None

Dynamic text
("Movement not de-
tected. Keep moving
slowly around the
Pokéstop.")

Progress bar:
Fills with time

Ingress Portal
Scanning [30] Yes Feature-points on

physical object None None
Static text ("Keep
the Portal within the
frame")

Static text ("... slowly
walk around the Por-
tal, if possible.")

Progress bar:
Fills with time

Apple’s Ob-
ject Capture
WWDC’23 pre-
sentation [14]

No (likely will
be available
with iOS 17)

Feature-points on
separate virtual
mesh

Direct manipu-
lation: Requires
user to walk
around the object
before scanning

Dynamic text
("Move closer")

Arrow pointing to-
wards object

Dynamic text ("Slow
down")

Progress bar
("dial"): Fills as
user scans

Our full-study
visual app Ours

Mesh similar to
Snap!’s, as well as
feature-points on
virtual object

Automatic place-
ment via inter-
active segmen-
tation and 3D
bounding-box
estimation

Visual ring
around the
object

Dynamic text ("The
camera isn’t aimed
at the object") and
blinking arrows

Dynamic text ("Slow
down")

Dynamic text
("You did it!")
for full 360 de-
grees

Our full-study
audio/haptic app Ours N/A

Automatic place-
ment via inter-
active segmen-
tation and 3D
bounding-box
estimation

Music adjust-
ments (volume,
pitch, low-pass
filter)

Haptic signals that
increase in frequency
and intensity as the
camera angle deviates
further from the POI

Voiced audio ("Too
fast", "Slow down
please", etc.)

Voiced audio
("You’re done!",
"You did it!",
etc.) for full 360
degrees
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7 Pilot study: Additional information about participants
Six participants (n=6) completed the study in London, with appointments between March 29 and
April 3, 2023. On arrival, participants signed research consent forms and were provided with anony-
mous codenames. Recruited participants’ ages ranged from 20 to 27 (x̄=23.83, SD=2.79) with one
participant being female and five being male.

Prior experience with 3D scanning was not a requirement for recruits, and we recruited partic-
ipants through various University College London email lists. We asked interested individuals to
complete an availability form and then contacted them to confirm an appointment. Participants
received a £25 gift card and complimentary merchandise (e.g . stickers).

8 Pilot study: Semi-structured interview questions
Listing 5 contains the semi-structured interview questions we asked participants in the pilot study.

Listing 5: Semi-structured interview questions from the pilot study.
--- Semi -Structured Interview Questions: No-Screen Scanning Pilot Study ---
Notes to participants:
"These questions are very broad/general on purpose , as we don ’t want to bias any of your answers ,

so please feel free to answer however you want and with whatever comes to mind. Also note
that we’re not judging you or your scanning ability , but rather , judging the app because we
want to improve it."

- Semi -Structured Interview Questions -
Codename: ______________

When considering the two different scanning processes ...

1. How did you hold the phone in each scanning experience?
a. What felt most natural / socially acceptable?

2. Was there anything that was particularly stressful in either scanning experience?

3. Did you feel like you were aware of your surroundings , comparing between the two scanning
experiences?

a. Did you feel like you were walking safely?
b. Did you trip or bump into things?

4. Imagine that your job was to make good scans. Did you feel confident you were scanning
correctly , comparing between the two scanning experiences?

5. Did you feel like you were aware of the scanning task/process , comparing between the two
scanning experiences?

6. What was most difficult about each app experience?
a. Was there anything you would change about it?

7. Was there anything that was especially enjoyable or rewarding?

8. Do you feel like there were pros/cons to either/each scanning app?

9. Any other comments?

9 Pilot study: Thematic analysis results
As discussed in the main paper, we present a deeper analysis of participants’ sentiments from the
pilot semi-structured interviews here. This includes stress-related themes, organized into the three
categories outlined in [38]: Social-evaluative, cognitive, and physical stress. It also includes rewarding
aspects of our audio/haptic app, and other opportunities for our app.

10



9.1 Stressors and stress reducers
We discuss stress-related themes next.

Social-evaluative. Five of six participants mentioned stressors involving other people’s percep-
tions of them. For instance, P1 mentioned that scanning felt awkward because “people [were] looking
at [her] ... because [she] was walking around [the statue] so many times”. She used strong language
in her description, mentioning she felt like bystanders were thinking, “What the f*** are you doing?”.
She also mentioned, however, that other bystanders may not care, stating, “Some people were just
like, ‘Oh yeah, it’s London. It’s completely normal [for odd things to happen here]’ ”.

P2, P3, P4 and P6 had similar concerns about social perceptions, but regarding the loud app
sounds when using the audio/haptic app in a public space. For example, P2 mentioned “I think I
definitely got way more ‘looks’ with the [audio/haptic app] because my phone was beeping”, and P6
mentioned “I guess having headphone[s] attached to the phone while [using the audio/haptic app]
would be better because the sounds might be too loud”. Thus, for the final study, we incorporated
headphones, and recommend minimizing external audio in public (F7 in Table 1 in the main
paper).

P3 and P4 mentioned the visual scanning condition felt more invasive of people’s privacy because
it was obvious they were recording. For instance, P4 said, “I think I saw people look at me, suspi-
ciously thinking, ‘What is this person doing, walking around the set here [while videoing]?’ ”. P3
said, “For the video app, I saw people duck away a couple of times [...] because they really thought I
was videoing. [...] The [audio/haptic app] was a little bit more socially acceptable, mainly because
if [bystanders] happened to look at my screen, it didn’t seem like I was recording”.

Participants had various views on how the busyness of the area affected them. For instance, P1
mentioned “maybe it helps that it’s London and that everyone [regularly experiences] weird stuff,
and because there are so many people around, no one will give you much attention’ ”. P5, however,
felt having many people around was a stressor because when “the street is quite crowded, even if you
stand still, you feel like you’re blocking someone”. On the other hand, P1 mentioned that having
fewer people around could increase stress because, “if it’s a quieter area and [...] you have your
phone volume turned on, people might notice”.

Interestingly, participants mentioned that anonymity, or conversely, celebrity status, could reduce
feelings of social-evaluative stress. For example, P6 mentioned wearing a mask made him feel
comfortable scanning in public, whereas P5 mentioned that he felt “quite accepted” because he felt
like an “Instagram” or “TikTok star”.

Cognitive. Through the interviews, we identified a bug in the audio/haptic app, where users
would not see the completion screen after finishing their scan. Users who encountered it (P1, P2,
and P5) described this as increasing their stress. E.g. P5 said, “I think the only stressful thing
was that I had to [scan with the audio/haptic app] twice because it didn’t say [I finished]” (P2).
We also observed that five of six participants mentioned that—at a certain point during the scan—
the audio/haptic feedback stopped aligning with the location of the actual POI. For example, P2
described how the system was providing a lot of negative feedback (“buzzing”), which “could have
been because it shifted place in the middle [of the scan] or something”. We suspected this was
because the AR session had lost track of the environment (e.g . due to SLAM drift [42]), and the
Object Transform had drifted away from the physical POI location. Thus, we decided we needed
to update our app by minimizing drift and eliminating any bugs (F5 in Table 1 in the main
paper).
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Some users found the visual app added cognitive stress because it did not provide scanning
guidance. For instance, P1 said, “The audio one was way more like, ‘Good job, you’re doing the
right thing!’, but with the [visual app] sometimes I couldn’t see the object”. Similarly, P5 mentioned
he was “more confident” using the audio/haptic app because it gave him “immediate feedback if [he
was] not in the correct position”. Thus, we recommend providing scanning guidance to increase
feelings of confidence.

Nonetheless, some participants felt their cognitive load decreased with the visual app because
they had prior experience with similar apps. For instance, P2 mentioned that it was “more natural
[...] because [he had] taken video of things before and [he was] used to it”. There was no “training
[required] for normal people”. Similarly, P6 mentioned, “not looking at your at the screen while
scanning is a bit counterintuitive in terms of our daily experience [with visual apps]”.

Physical. Five of six participants mentioned they felt like they may collide with something, es-
pecially when looking at the phone screen. For example, P4 stated, “The video [app] makes you
more focused and you’re less aware of your surroundings. [...] With the video [app], I bumped into
somebody just because I had to focus on the camera”. Similarly, P3 described how when “there was
a guy walking towards” him, he could navigate around “him more easily [with the audio/haptic app]
than with the video one”.

Participants also mentioned feeling like people may steal from them. For example, P3 mentioned
he had “a slight worry that someone would grab the phone and start running”. P1 described similar
feelings, and how she could see how the audio/haptic app could allow users to “look around more
[...] for pickpockets [...] so no one [could] snatch your phone”. Because hiding the video feed seemed
to increase user awareness (and reduce users’ social-evaluative stress, as described in Section 9.1),
we recommend hiding the video feed to increase users’ feelings of awareness and reduce
social-evaluative stress.

Despite how many participants felt more aware when using the audio/haptic app, two participants
also mentioned they felt like they needed to grip the phone more strongly with the audio/haptic
app because they were not looking at it. Because of this, and the potential for thieves, we provided
participants with phone grippers in the full-scale study, and recommend improving users’ grip,
when possible (F6 in Table 1 in the main paper).

9.2 Rewarding aspects
Participants also mentioned rewarding aspects of the audio/haptic scanning experience. For example,
P2 mentioned, “I feel like a lot of people play Niantic’s [location-based AR] games, and they normally
listen to music as they’re going along. So I think that’s quite awesome [that they could listen and
play at the same time].” P5 mentioned that the audio/haptic app “is quite a fun. I feel happy
after [using it]”, in comparison with the visual app. P1 and P3 mentioned the voiced feedback was
rewarding, “I thought the audible feedback at the end was nice. Like, ‘You’re done!’ It feels like I
accomplished something” (P4). Thus, we recommend utilising music and voiced feedback as
rewarding features.

Five of six participants mentioned the visualisation of the resulting mesh reconstruction in the
audio/haptic app (as shown in the main paper) was rewarding. For instance, P2 stated, “Looking
around at the object [3D mesh] with the the audio app was pretty cool. And I was really surprised
how well [it made it].” P6 was so impressed with the reconstruction, he “wanted to do a second scan!”.
Thus, we recommend providing a mesh reconstruction (even low-fidelity) as a rewarding
feature.
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Another rewarding feature included using haptic feedback (rather than sight) to view-find. E.g.
P4 said it was especially rewarding “when you at some point figure out how to angle the camera
with the [haptic feedback]”, and P1 mentioned, “Finding the correct orientation doing audio scan
was probably the [most] rewarding part”. Thus, we recommend utilising haptic feedback for
view-finding as a rewarding feature.

9.3 Other opportunities
Participants also mentioned opportunities where the audio/haptic app would be useful, and how
to improve it. For example, P2 mentioned audio/haptic scanning could be useful for “people who
are vision impaired”. P5 mentioned the app was democratising scanning technology: “If you allow
people to use [the audio/haptic app], anyone could use their phone and scan”, as opposed to how
“Google” requires “professional machines to make a scan”.

P2, P3 and P6 mentioned an opportunity to improve the concept of the Object Transform. P6
described how it would be better if the Object Transform “fully encapsulated” the statue; for example,
with a “rectangle instead of a small character”. P3 mentioned it would “be nice if people could
maybe take a still [picture] and then mark the area. So it can just detect the object [automatically]”.
Thus, we recommend utilising computer vision to detect what the user wants to scan, and
better conveying the Object Transform concept by using a neutral virtual object (e.g .
bounding-box), and fully enveloping the physical object (C1 in Table 1 in the main paper).

P6 mentioned difficulty locating the “correct distance” using the audio/haptic app because when
he “was moving either away or towards the object, the volume drop[ped]”. He also mentioned this
could be solved by “changing the tone” when “moving in [a particular] direction”. Similarly, P3
mentioned that “it could be nice to work with tones or if [the music] somehow changes a little bit”.
Thus, we recommend utilising tone changes to improve music guidance (F1 in Table 1 in the
main paper).

10 Full-scale study app: 3D bounding-box estimation algo-
rithm

As described in the main paper, in the full-scale study app, the user taps the object they want to
scan, and the app uses an interactive segmentation model [4] to identify the pixels of the object the
user tapped. After this, the app estimates the 3D location, scale and orientation of the object (i.e.
the Object Transform). We implemented this using the algorithm in Listing 6. We recognize there
are likely other 3D bounding-box estimation algorithms that are more robust to alternative POI
shapes; however, this algorithm worked for the purposes of our study.

Listing 6: Pseudo-code for the 3D bounding-box estimation of the object being scanned.
1. The user taps on-screen to identify the object to scan

a. Using the tap ’s location , segment the object pixels to obtain a "pixel mask"

2. For each pixel in the mask , obtain a depth value (e.g. from a LIDAR point cloud , if
available , or image depth estimation)

3. Estimate two 3D points on the object ’s front face by calculating the nth (e.g. 10th) and
mth (e.g. 15th) percentile depth values in the camera ’s forward direction (Note: percentiles
are used to filter out extremely close/far depth values)

a. Create a line of best fit between the two points for the object ’s front face
b. In the horizontal plane , obtain the length of the line segment that would represent

the front face using the points furthest away from each other in the direction of the line
of best fit
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4. Repeat step 3 in the "right" and "up" directions with respect to the front face ’s
orientation to obtain a line segment of best fit for the right and top faces

5. Create a bounding -box (" Object Transform ") based on the front , right , and top face
estimations

11 Full-scale study: Questionnaires
The following section contains references to the validated questionnaires we used in the full-scale
study (which can be found in the literature cited), as well as the questionnaires we developed
ourselves.

11.1 Pre-/post-survey
In the pre- and post-surveys, we included emotional affect questions using the Self-Assessment
Manikins (SAM) in [28]. This was to determine users’ arousal and valence before and after scanning.
Additionally, we included questions we developed based on observations from the pilot study. You
can find these in in Listing 7.

Listing 7: Additional questions in the pre/post-surveys. These were presented in randomized order
within each subsection.
--- On both the pre - and post -survey ---
1. Please click the facial expression that best matches how you feel right now. [Multiple choice:

SAM - valence facial expressions .]

2. Please click the facial expression that best matches how you feel right now. [Multiple choice:
SAM - arousal facial expressions .]

3. Any anonymous comments? [Long answer]

--- Only on the pre -survey ---
1. How much are the following ’stressors ’ contributing to your current stress levels , if at all?

[Likert scale , 1-5, for each stressor :]
a. Social stress , like being watched or judged , etc.
b. Cognitive stress , like having too much to think about , etc.
c. Physical stress , like feeling like someone might bump into you or steal from you , or feeling

like you might bump into something , etc.

--- Only on the post -survey ---
1. How much did the following ’stressors ’ contribute to your stress levels during the scan , if at

all? [Likert scale , 1-5, for each stressor :]
a. Social stress , like being watched or judged , etc.
b. Cognitive stress , like having too much to think about , etc.
c. Physical stress , like feeling like someone might bump into you or steal from you , or feeling

like you might bump into something , etc.

2. During the scan , did you bump into anything or did anything bump into you? [Multiple choice :]
a. No
b. Yes , at least once
c. Yes , multiple times

11.2 Final survey
The final survey included two validated questionnaires: the State-Trait Anxiety Inventory [41] and
the User Engagement Scale - Short Form (UES-SF) [35]. As in the pre-/post-surveys, we included
questions we developed based on observations from the pilot study, as shown in Listing 8.
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Listing 8: Additional questions in the final survey. These were presented in randomized order within
each subsection.
--- Prior experience ---
1. Approximately how many times have you scanned outdoors before? This could include scanning

using an app , like scanning in Pokemon Go , or taking a video of an object outside while
circling around it.

2. Prior to this study , how much did you know about scanning to create 3D meshes/objects? [
Multiple choice :]

a. I didn ’t know what scanning and/or 3D meshes/objects were
b. I had basic knowledge of what scanning is
c. I knew about scanning and how to improve scans
d. I had extensive knowledge about how to scan well , and could have taught others how to

improve scans

3. Does your profession or any of your major hobbies involve using a camera? If so, what is this
hobby/profession? Include any past professions or hobbies related to cameras too. [Short
answer]

--- Heart rate related demographics ---
4. What is your gender? (We ask this as it could affect your heart rate) [Short answer]

5. Has your gender changed? (We ask this as it could affect your heart rate) [Short answer]

6. How old are you?

--- State -Trait Anxiety Inventory ---
Read each statement and select the appropriate response to indicate how you generally feel.
There are no right or wrong answers. Do not spend too much time on any one statement , but give

the answer which seems to describe how you generally feel. [Likert scale: State -Trait
Anxiety Inventory .]

--- User engagement scale ---
The following statements ask you to reflect on your experience engaging with the scanning app.

For each statement , please use the following scale to indicate what is most true for you. [
Likert scale: UES -SF]

--- Stressors ---
7. Check the boxes next to anything that contributed to your stress levels (if at all). Check "

None" if none apply. [Checkboxes :]
a. Navigating around people
b. Navigating around objects
c. Physically holding the phone
d. The potential for thieves
e. Feeling like the activity wasn ’t socially acceptable
f. Feeling like I wasn ’t providing other people enough privacy
g. Feeling like the activity was noisy or distracting for other people
h. Running into a bug in the app
i. The app visuals (if using the video app)
j. The app sounds/vibrations (if using the audio app)
k. Feeling like there ’s too much information at once
l. None
m. Other ... [Short answer]

8. Select the item that contributed *most* to your stress levels (if at all).
a. Navigating around people
b. Navigating around objects
c. Physically holding the phone
d. The potential for thieves
e. Feeling like the activity wasn ’t socially acceptable
f. Feeling like I wasn ’t providing other people enough privacy
g. Feeling like the activity was noisy or distracting for other people
h. Running into a bug in the app
i. The app visuals (if using the video app)
j. The app sounds/vibrations (if using the audio app)
k. Feeling like there ’s too much information at once
l. None
m. Other ... [Short answer]

--- Drift ---

15



9. Did you feel like the location where you were supposed to point your phone "drifted" off of
the actual object location (i.e. to get the app to tell you that you were "scanning
correctly", you had to point the phone in a different direction than the statue)? [Multiple
choice :]

a. Yes , I felt like the location "drifted"
b. No, I didn ’t feel like the location "drifted"
c. Other ... [Short answer]

10. If you felt like the location where you were supposed to point your phone "drifted" off of
the actual object location , were you able to "re-locate" it (i.e. were you able to move the
phone so the app said you were "scanning correctly" even if you weren ’t necessarily pointing
at the statue)? [Multiple choice :]

a. The object didn ’t drift for me
b. Yes , I was able to relocate where I was supposed to point my phone
c. No, I wasn ’t able to relocate where I was supposed to point my phone
d. Other ... [Short answer]

11. Please describe any bugs. [Short answer]

--- Comments ---
12. Any anonymous comments? [Long answer]

12 Full-scale study: Procedure for scanned mesh comparisons
In this section, we describe how we generated accuracy scores for our scanned meshes.

Ground Truth reconstruction. We densely captured high resolution images of the statue on a
clear day with no traffic using a modern DSLR. We then used COLMAP’s Structure-from-Motion [39]
and Multi-View-Stereo [40] to obtain a high quality reconstruction of the Agatha Christie statue.
Since this reconstruction is only accurate up to scale, we measured the statue at multiple points and
used these measurements to scale our reconstruction.

Scan alignment and pose refinement. Each scan lives in a different coordinate system to that
in the GT scan, and each scan’s poses suffer from significant drift due to heavy static scene occlusion
and moving objects—notably from people and bikes. To remedy this and produce the best possible
reconstructions from each scan, we register the images in each scan to the GT with COLMAP to
compute new poses for every scan. During registration, we carefully mask pixels containing moving
objects (people, bikes, cars) for feature extraction. We use computed poses from this step for the
remainder of the pipeline.

Mesh reconstruction and TSDF fusion. We leverage the iPhone’s LiDAR depth sensor to
reconstruct meshes from each user study scan. We fuse each scan’s depths into a TSDF volume
using the TSDF fuser from [37]. We extract a mesh using marching cubes.

13 Full-scale study: Additional analyses and results
This section contains detailed output from the post-hoc and MANCOVA/ANCOVA linear regression
analyses.

13.1 Engagement analysis
The results of the post-hoc engagement anslyses are shown in Listing 9. Note how the p-values with
respect to engagement, reward factor, and perceived usability are significant (p<.05), meaning the
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audio/haptic conditions were more engaging, rewarding and usable.

Listing 9: Post-hoc results from analysing engagement.
--- Comparison between audio/haptic & visual engagement (overall) ---
Normal? True -> t-test

Significant? True
p-value: 0.014935564235268971
t(49): 2.238363378186459

Engagement means:
audio/haptic: 3.76
visual: 3.40

--- Comparison between audio/haptic & visual focused attention ---
Normal? True -> t-test

Significant? False
p-value: 0.06336467987593615
t(49): 1.554102371160823

Focused attention means:
audio/haptic: 3.37
visual: 3.04

--- Comparison between audio/haptic & visual reward factor ---
Normal? True -> t-test

Significant? True
p-value: 0.04109324601514395
t(49): 1.7753146379037608

Reward factor means:
audio/haptic: 3.95
visual: 3.60

--- Comparison between audio/haptic & visual perceived usability ---
Normal? False -> Mann -Whitney U test

Significant? True
p-value: 0.04997801503072596
U: 396.0

Perceived usability means:
audio/haptic: 3.95
visual: 3.57

Listing 10 shows the results of our ANCOVA analysis for engagement. Engagement was trans-
formed to satisfy the ANCOVA requirements, as described in [6]. Note how the model, and the
variable, app type (audio/haptic vs. visual), are significant.

Listing 10: ANCOVA results from analysing engagement.
Model: (log_1 .2( engagement))^3 ~ C(appType) + timesScanning + busyness

OLS Regression Results
==============================================================================
Dep. Variable: engagement R-squared: 0.159
Model: OLS Adj. R-squared: 0.104
Method: Least Squares F-statistic: 2.898
Date: Tue , 22 Aug 2023 Prob (F-statistic): 0.0450
Time: 13:14:26 Log -Likelihood: -307.32
No. Observations: 50 AIC: 622.6
Df Residuals: 46 BIC: 630.3
Df Model: 3
Covariance Type: nonrobust
=======================================================================================

17



coef std err t P>|t| [0.025 0.975]
---------------------------------------------------------------------------------------
Intercept 441.5688 67.656 6.527 0.000 305.384 577.753
C(appType)[T.video] -69.9171 33.598 -2.081 0.043 -137.546 -2.288
timesScanning 15.0202 12.420 1.209 0.233 -9.981 40.021
busyness -183.7114 126.382 -1.454 0.153 -438.106 70.683
==============================================================================
Omnibus: 5.107 Durbin -Watson: 2.348
Prob(Omnibus): 0.078 Jarque -Bera (JB): 3.959
Skew: 0.594 Prob(JB): 0.138
Kurtosis: 3.700 Cond. No. 22.1
==============================================================================

13.2 Safety proxy analyses
This section contains detailed analyses of safety proxy variables from the full study, including:

• the number of times users collided with obstacles,

• incremental HR as a proxy for stress [21, 20, 7],

• emotional affect via the circumplex model to determine whether users felt more stressed after
scanning [28, 38], and

• social-evaluative, cognitive, and physical stressors via Likert scales [38, 10].

As described in the main paper, none of the analyses indicated either condition (audio/haptic or
visual) was less safe or more stressful than the other.

Emotional affect. To determine whether people felt differently before and after scanning, we
utilized the circumplex model, which measures affect in terms of valence and arousal. The va-
lence/arousal scale allows researchers to identify how participants feel, as shown in Figure 2 [28].
Specifically, we wanted to determine whether participants leaned towards “stress” in either condition.

From Figures 3 and 4, it would seem that audio/haptic-app users’ affect shifted towards happi-
ness/contentedness (ignoring outliers), whereas visual-app users’ affect shifted away from happiness/-
contentedness. After modelling affect using MANCOVA (F2,37=3.69, Pillai’sTrace=.166, p=.035),
however, we did not find evidence that app type significantly predicted affect.

Listing 11 shows the results of our MANCOVA analysis for emotional affect based on the cir-
cumplex model (arousal/valence). Note how the model is significant, but app type (audio/haptic
vs. visual) is not.

Listing 11: MANCOVA results from analysing emotional affect.
Model: valenceAfter + arousalAfter ~ C(appType) + valenceBefore + arousalBefore + profession +

busyness
Multivariate linear model

============================================================

------------------------------------------------------------
Intercept Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.8337 2.0000 37.0000 3.6902 0.0346

Pillai ’s trace 0.1663 2.0000 37.0000 3.6902 0.0346
Hotelling -Lawley trace 0.1995 2.0000 37.0000 3.6902 0.0346

Roy ’s greatest root 0.1995 2.0000 37.0000 3.6902 0.0346
------------------------------------------------------------

------------------------------------------------------------
C(appType) Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
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Figure 2: The circumplex model with emotions based on [43] (adapted from [29]). The arousal/va-
lence scales (1-5) are based on the Likert scale SAM questions [28] we used in our study.

Figure 3: Audio/haptic-app users’ affect before and after scanning (which map to Figure 2). Note
how (ignoring the outlier)—after scanning—the left-most bins decrease in size.
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Figure 4: Visual-app users’ affect before and after scanning (which map to Figure 2). Note how—
after scanning—additional leftward bins appear or increase in size.

Wilks ’ lambda 0.9487 2.0000 37.0000 1.0003 0.3775
Pillai ’s trace 0.0513 2.0000 37.0000 1.0003 0.3775

Hotelling -Lawley trace 0.0541 2.0000 37.0000 1.0003 0.3775
Roy ’s greatest root 0.0541 2.0000 37.0000 1.0003 0.3775

------------------------------------------------------------

------------------------------------------------------------
valenceBefore Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.6613 2.0000 37.0000 9.4736 0.0005

Pillai ’s trace 0.3387 2.0000 37.0000 9.4736 0.0005
Hotelling -Lawley trace 0.5121 2.0000 37.0000 9.4736 0.0005

Roy ’s greatest root 0.5121 2.0000 37.0000 9.4736 0.0005
------------------------------------------------------------

------------------------------------------------------------
arousalBefore Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.4737 2.0000 37.0000 20.5527 0.0000

Pillai ’s trace 0.5263 2.0000 37.0000 20.5527 0.0000
Hotelling -Lawley trace 1.1110 2.0000 37.0000 20.5527 0.0000

Roy ’s greatest root 1.1110 2.0000 37.0000 20.5527 0.0000
------------------------------------------------------------

------------------------------------------------------------
profession Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.6435 2.0000 37.0000 10.2473 0.0003

Pillai ’s trace 0.3565 2.0000 37.0000 10.2473 0.0003
Hotelling -Lawley trace 0.5539 2.0000 37.0000 10.2473 0.0003

Roy ’s greatest root 0.5539 2.0000 37.0000 10.2473 0.0003
------------------------------------------------------------

------------------------------------------------------------
busyness Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.9993 2.0000 37.0000 0.0125 0.9875

Pillai ’s trace 0.0007 2.0000 37.0000 0.0125 0.9875
Hotelling -Lawley trace 0.0007 2.0000 37.0000 0.0125 0.9875

Roy ’s greatest root 0.0007 2.0000 37.0000 0.0125 0.9875
============================================================

Social-evaluative, cognitive and physical stressors. We also wanted to directly investigate
self-reports of the three stress types. After a visual (see Figure 5) and MANCOVA (F3,35=7.52,
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Figure 5: Stress distributions on a 5-point Likert Scale before and after the scanning experience.
Notice the similarity between the audio/haptic and visual conditions in each plot.

Pillai’sTrace=.392, p<.001) investigation of the data (see Listing 12), there was no evidence that app
type significantly affected changes in social-evaluative, cognitive or physical stress levels. Conducting
an ANCOVA (see Listing 13) with an average of the three stressors (F4,39=14.0, R2=.589, p<.000)
also did not result in any evidence for app type affecting stress levels.

Listing 12 shows the results of our MANCOVA analysis for stress. Note how the model is
significant, but app type (audio/haptic vs. visual) is not.

Listing 12: MANCOVA results from analysing stress levels.
Model: socialstressafter + cognitivestressafter + physicalstressafter ~ socialstressbefore +

cognitivestressbefore + physicalstressbefore + C(appType) + anxietyTrait + profession
Multivariate linear model

============================================================

------------------------------------------------------------
Intercept Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.6080 3.0000 35.0000 7.5227 0.0005

Pillai ’s trace 0.3920 3.0000 35.0000 7.5227 0.0005
Hotelling -Lawley trace 0.6448 3.0000 35.0000 7.5227 0.0005

Roy ’s greatest root 0.6448 3.0000 35.0000 7.5227 0.0005
------------------------------------------------------------

------------------------------------------------------------
C(appType) Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.9176 3.0000 35.0000 1.0479 0.3836

Pillai ’s trace 0.0824 3.0000 35.0000 1.0479 0.3836
Hotelling -Lawley trace 0.0898 3.0000 35.0000 1.0479 0.3836

Roy ’s greatest root 0.0898 3.0000 35.0000 1.0479 0.3836
------------------------------------------------------------

------------------------------------------------------------
socialstressbefore Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.7299 3.0000 35.0000 4.3179 0.0108

Pillai ’s trace 0.2701 3.0000 35.0000 4.3179 0.0108
Hotelling -Lawley trace 0.3701 3.0000 35.0000 4.3179 0.0108

Roy ’s greatest root 0.3701 3.0000 35.0000 4.3179 0.0108
------------------------------------------------------------
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------------------------------------------------------------
cognitivestressbefore Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.5647 3.0000 35.0000 8.9939 0.0001

Pillai ’s trace 0.4353 3.0000 35.0000 8.9939 0.0001
Hotelling -Lawley trace 0.7709 3.0000 35.0000 8.9939 0.0001

Roy ’s greatest root 0.7709 3.0000 35.0000 8.9939 0.0001
------------------------------------------------------------

------------------------------------------------------------
physicalstressbefore Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.8091 3.0000 35.0000 2.7524 0.0571

Pillai ’s trace 0.1909 3.0000 35.0000 2.7524 0.0571
Hotelling -Lawley trace 0.2359 3.0000 35.0000 2.7524 0.0571

Roy ’s greatest root 0.2359 3.0000 35.0000 2.7524 0.0571
------------------------------------------------------------

------------------------------------------------------------
anxietyTrait Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.9050 3.0000 35.0000 1.2245 0.3154

Pillai ’s trace 0.0950 3.0000 35.0000 1.2245 0.3154
Hotelling -Lawley trace 0.1050 3.0000 35.0000 1.2245 0.3154

Roy ’s greatest root 0.1050 3.0000 35.0000 1.2245 0.3154
------------------------------------------------------------

------------------------------------------------------------
profession Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.6772 3.0000 35.0000 5.5615 0.0031

Pillai ’s trace 0.3228 3.0000 35.0000 5.5615 0.0031
Hotelling -Lawley trace 0.4767 3.0000 35.0000 5.5615 0.0031

Roy ’s greatest root 0.4767 3.0000 35.0000 5.5615 0.0031
============================================================

Our ANCOVA analysis with an average of the three stressors, shown in Listing 13, also did not
result in any evidence for app type affecting stress levels.

Listing 13: ANCOVA results from analysing stress levels.
Model: stressafter ~ stressbefore + C(appType) + anxietyTrait + profession

OLS Regression Results
==============================================================================
Dep. Variable: stressafter R-squared: 0.589
Model: OLS Adj. R-squared: 0.547
Method: Least Squares F-statistic: 13.97
Date: Sat , 26 Aug 2023 Prob (F-statistic): 3.69e-07
Time: 13:25:55 Log -Likelihood: -30.429
No. Observations: 44 AIC: 70.86
Df Residuals: 39 BIC: 79.78
Df Model: 4
Covariance Type: nonrobust
=======================================================================================

coef std err t P>|t| [0.025 0.975]
---------------------------------------------------------------------------------------
Intercept 2.8537 0.614 4.644 0.000 1.611 4.096
C(appType)[T.video] -0.0332 0.158 -0.210 0.835 -0.354 0.287
stressbefore 0.8554 0.154 5.544 0.000 0.543 1.167
anxietyTrait -0.1155 0.183 -0.633 0.531 -0.485 0.254
profession -2.1588 0.525 -4.111 0.000 -3.221 -1.097
==============================================================================
Omnibus: 1.681 Durbin -Watson: 2.291
Prob(Omnibus): 0.431 Jarque -Bera (JB): 1.277
Skew: -0.195 Prob(JB): 0.528
Kurtosis: 2.262 Cond. No. 30.8
==============================================================================

22



Figure 6: Users’ incremental heart rates between the two app types. Notice their similarity.

Heart rate. When we initially performed ANCOVA on incremental HR (see Listing 15), the
normality assumption was not satisfied. As recommended by Osborne and Overbay, we removed
one outlier from the incremental heart rate data based on three standard deviations from the mean
[34]. This resulted in the normality assumption being satisfied and the model being significant
(F5,37=2.78, R2=.273, p=.031). The ANCOVA results after removing outliers (see Listing 14)
resulted in the same variables having significant p-values: age (t(37)=-2.27, p=.029) and the anxiety
trait (t(37)=2.13, p=.040). In both cases, the variable of interest, app type, was not significant.
Furthermore, the distributions between the audio/haptic and visual conditions look similar, as shown
in Figure 6.

Listing 14: ANCOVA results from analysing incremental heart rate. Note that this analysis has an
outlier removed, which enables the data to satisfy the normality assumption.
Model: incHR ~ C(appType) + age + anxietyTrait + busyness + timesScanning

OLS Regression Results
==============================================================================
Dep. Variable: incHR R-squared: 0.273
Model: OLS Adj. R-squared: 0.175
Method: Least Squares F-statistic: 2.783
Date: Mon , 21 Aug 2023 Prob (F-statistic): 0.0313
Time: 16:25:39 Log -Likelihood: -133.94
No. Observations: 43 AIC: 279.9
Df Residuals: 37 BIC: 290.4
Df Model: 5
Covariance Type: nonrobust
=======================================================================================

coef std err t P>|t| [0.025 0.975]
---------------------------------------------------------------------------------------
Intercept -1.9451 6.545 -0.297 0.768 -15.206 11.316
C(appType)[T.video] 0.9476 1.817 0.522 0.605 -2.734 4.629
age -0.2427 0.107 -2.272 0.029 -0.459 -0.026
anxietyTrait 3.7578 1.763 2.132 0.040 0.186 7.330
busyness 7.3427 6.948 1.057 0.297 -6.735 21.420
timesScanning -0.3271 0.681 -0.480 0.634 -1.707 1.053
==============================================================================
Omnibus: 0.770 Durbin -Watson: 1.815
Prob(Omnibus): 0.680 Jarque -Bera (JB): 0.181
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Table 2: The number of participants who collided with objects or people.
App Type Number Collided Collided Collided

Participants Once Multiple Times (at all)
Audio/haptic 26 5 (19.23%) 1 (3.85%) 6 (23.08%)
Visual 24 3 (12.50%) 2 (8.33%) 5 (20.83%)

Skew: -0.068 Prob(JB): 0.913
Kurtosis: 3.287 Cond. No. 324.
==============================================================================

Listing 15: ANCOVA results from analysing incremental heart rate. Note that this analysis includes
an outlier, such that the normality assumption is not satisfied.
Model: incHR ~ C(appType) + age + anxietyTrait + busyness + timesScanning

OLS Regression Results
==============================================================================
Dep. Variable: incHR R-squared: 0.314
Model: OLS Adj. R-squared: 0.223
Method: Least Squares F-statistic: 3.474
Date: Thu , 24 Aug 2023 Prob (F-statistic): 0.0111
Time: 13:35:35 Log -Likelihood: -140.78
No. Observations: 44 AIC: 293.6
Df Residuals: 38 BIC: 304.3
Df Model: 5
Covariance Type: nonrobust
=======================================================================================

coef std err t P>|t| [0.025 0.975]
---------------------------------------------------------------------------------------
Intercept -2.6613 7.105 -0.375 0.710 -17.045 11.723
C(appType)[T.video] 0.3428 1.960 0.175 0.862 -3.625 4.311
age -0.2708 0.116 -2.343 0.024 -0.505 -0.037
anxietyTrait 4.4991 1.894 2.376 0.023 0.666 8.332
busyness 9.9702 7.480 1.333 0.190 -5.171 25.112
timesScanning -0.4493 0.738 -0.609 0.546 -1.944 1.045
==============================================================================
Omnibus: 1.558 Durbin -Watson: 1.728
Prob(Omnibus): 0.459 Jarque -Bera (JB): 0.765
Skew: 0.264 Prob(JB): 0.682
Kurtosis: 3.372 Cond. No. 324.
==============================================================================

We took two additional alternative baseline HR measurements: one while participants walked
indoors and once while they scanned indoors. As with the baseline taken during an outdoor walk,
the distributions of the incremental HRs looked similar between the two app conditions. We show
this in Figure 7. Thus, we did not expect there to be any significant differences and did not pursue
further analyses.

Collisions. Self-reports of collisions were similar between the audio/haptic and visual conditions
(see Table 2). Overall, 22% of participants collided with at least one object or person.

13.3 User scan accuracy and scan length
The results of the post-hoc analyses of user scan accuracy and scan length are shown in Listing 16.
Note how the p-value with respect to scan length is significant, meaning users engaged with the
audio/haptic scanning process longer than with the visual app.

Listing 16: Post-hoc results from analysing user scan accuracy and scan length.
--- Comparison between audio/haptic & visual: percentTimeOnScreen ---
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Figure 7: Incremental heart rate distributions measured using alternative baselines. On the left, the
baseline measurement was taken while the participant walked indoors. On the right, the baseline
measurement was taken while the participant scanned indoors. Notice the similar distributions
between the audio/haptic condition and visual condition in each plot.
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Normal? False -> Mann -Whitney U test

Significant? False
p-value: 0.08222109934077182
U: 240.0

percentTimeOnScreen means:
audio/haptic: 0.79
visual: 0.84

--- Comparison between audio/haptic & visual: percentTimeWithinDist ---
Normal? False -> Mann -Whitney U test

Significant? False
p-value: 0.0636218221836183
t(49): -1.551948734234481

percentTimeWithinDist means:
audio/haptic: 0.67
visual: 0.77

--- Comparison between audio/haptic & visual: tooFastCount ---
Normal? False -> Mann -Whitney U test

Significant? False
p-value: 0.24699165224461167
U: 297.0

--- Comparison between audio/haptic & visual: totalTime ---
Normal? False -> Mann -Whitney U test

Significant? True
p-value: 0.023274266598568395
U: 415.0

totalTime (seconds) means:
audio/haptic: 59.16
visual: 45.03

Listing 17 shows the results of our MANCOVA analysis for user scan accuracy and scan length.
Note how the model and app type are significant.

Listing 17: MANCOVA results from analysing user scan accuracy and scan length.
Model: percentTimeOnScreen + percentTimeWithinDist + tooFastCount + totalTime ~ C(appType) +

drift + busyness + timesScanning
Multivariate linear model

============================================================

------------------------------------------------------------
Intercept Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.3712 1.0000 42.0000 71.1612 0.0000

Pillai ’s trace 0.6288 1.0000 42.0000 71.1612 0.0000
Hotelling -Lawley trace 1.6943 1.0000 42.0000 71.1612 0.0000

Roy ’s greatest root 1.6943 1.0000 42.0000 71.1612 0.0000
------------------------------------------------------------

------------------------------------------------------------
C(appType) Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.8389 1.0000 42.0000 8.0663 0.0069

Pillai ’s trace 0.1611 1.0000 42.0000 8.0663 0.0069
Hotelling -Lawley trace 0.1921 1.0000 42.0000 8.0663 0.0069

Roy ’s greatest root 0.1921 1.0000 42.0000 8.0663 0.0069
------------------------------------------------------------

------------------------------------------------------------
drift Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.7626 1.0000 42.0000 13.0754 0.0008
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Table 3: The number of participants who moved too quickly and received speed warnings. Note how
participants in the visual condition did not seem to slow down after receiving their first warning.

App Type Number Participants with one Participants with multiple
Participants or more speed warning speed warnings

Audio/haptic 26 1 (3.85%) 0 (0%)
Visual 24 2 (8.33%) 2 (8.33%)

Pillai ’s trace 0.2374 1.0000 42.0000 13.0754 0.0008
Hotelling -Lawley trace 0.3113 1.0000 42.0000 13.0754 0.0008

Roy ’s greatest root 0.3113 1.0000 42.0000 13.0754 0.0008
------------------------------------------------------------

------------------------------------------------------------
timesScanning Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.8250 4.0000 42.0000 2.2267 0.0824

Pillai ’s trace 0.1800 4.0000 42.0000 2.3048 0.0741
Hotelling -Lawley trace 0.2060 4.0000 42.0000 2.1631 0.0898

Roy ’s greatest root 0.1728 4.0000 42.0000 1.8139 0.1441
------------------------------------------------------------

------------------------------------------------------------
busyness Value Num DF Den DF F Value Pr > F

------------------------------------------------------------
Wilks ’ lambda 0.9446 1.0000 42.0000 2.4610 0.1242

Pillai ’s trace 0.0554 1.0000 42.0000 2.4610 0.1242
Hotelling -Lawley trace 0.0586 1.0000 42.0000 2.4610 0.1242

Roy ’s greatest root 0.0586 1.0000 42.0000 2.4610 0.1242
============================================================

13.3.1 Speed warnings

Seeing as participants needed to move 360° around the statue to complete the scan, and the visual-
app users completed this faster, they also likely moved faster. Nonetheless, only two participants
received speed warnings in the visual condition (compared to only one in the audio/haptic condition).
That being said, as shown in Table 3, the participants in the visual condition did not seem to pay
attention to the warning, as they received multiple additonal warnings after the first. In the audio
condition, the participant who received the warning did not receive another.

13.4 Scan mesh accuracy
Our post-hoc and ANCOVA analyses of scan mesh accuracy (via chamfer distance) are in Listing 18
and 19. Note how the ANCOVA model, and the relationship between app type and chamfer distance
are significant (Listing 19). The chamfer distance for the audio/haptic condition is also significantly
smaller (i.e. more accurate) than the in the visual condition.

Listing 18: Post-hoc (t-test) results from analysing scan mesh accuracy scores. Note how the au-
dio/haptic chamfer distance is significantly smaller than the visual chamfer distance. Since decreas-
ing chamfer distance is associated with increasing accuracy, the audio/haptic scans are significantly
more accurate than the visual scans with respect to chamfer distance.
--- Comparison between audio/haptic & visual: Chamfer Distance ---
Normal? True

Significant? True (One -tailed: audio/haptic less than visual)
p-value: 0.021246919335621808
t(49): -2.0841366628664324
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chamfer means:
audio/haptic: 0.0549
visual: 0.0666

Listing 19: ANCOVA results from analysing chamfer distance, a mesh accuracy score. Note how
the overall model and the “app type” variable are both significant.

OLS Regression Results
==============================================================================
Dep. Variable: chamfer R-squared: 0.172
Model: OLS Adj. R-squared: 0.118
Method: Least Squares F-statistic: 3.188
Date: Thu , 14 Sep 2023 Prob (F-statistic): 0.0324
Time: 08:30:15 Log -Likelihood: 128.70
No. Observations: 50 AIC: -249.4
Df Residuals: 46 BIC: -241.7
Df Model: 3
Covariance Type: nonrobust
=======================================================================================

coef std err t P>|t| [0.025 0.975]
---------------------------------------------------------------------------------------
Intercept 0.0395 0.010 3.934 0.000 0.019 0.060
C(appType)[T.video] 0.0113 0.005 2.071 0.044 0.000 0.022
drift[T.True] 0.0121 0.007 1.714 0.093 -0.002 0.026
age 0.0004 0.000 1.426 0.161 -0.000 0.001
==============================================================================
Omnibus: 0.898 Durbin -Watson: 0.932
Prob(Omnibus): 0.638 Jarque -Bera (JB): 0.939
Skew: 0.291 Prob(JB): 0.625
Kurtosis: 2.667 Cond. No. 121.
==============================================================================

14 Full-scale study: Unprompted comments
In the full-scale study, we provided users with text boxes for “anonymous comments” on each of
the surveys. Although we did not expect many users to provide additional comments, around 30%
of participants did. Below, we describe the comment highlights. Afterwards, we list all of the
comments.

Note that users entered these comments before experiencing the other app (although some users
had previously used visual scanning apps, and thus describe the audio/haptic app with respect to
those experiences).

Audio/haptic use case highlights. Three users described use cases for the audio/haptic app:
• “Audio cue[s] would suit a city environment for user[s] who usually have headphones”

• “The use of the audio is very inclusive”

• “I think it’s great for safety measures, can be used to improve AR features in current games”

Learning and enjoyment of the audio/haptic app and mesh reconstruction highlights.
A number of users mentioned enjoying the audio/haptic app:

• “As a new feature it does take few minutes do adapt! But it was fun!!!”

• “Great experience! I had fun!”

• “all was good for me (:”

• “Very good experience, thank you for having me be a part of it. Loved seeing the scan output and feel that others
would benefit from [this]”

• “The instant result of being able to see the meshed scan is very beneficial”
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Privacy and confidence highlights. One user mentioned that using audio/haptics “greatly en-
hanced [their] scanning experience!” They also stated, “having the screen off and not displaying a
live image help[ed] [them] feel less concerned that others perceived [them] as invading their privacy”,
and that they felt “much more confident scanning while the screen remain[ed] dark” because they
could tell they were “still producing a good scan using audio cues”.

Two users of the visual app mentioned privacy concerns:

• “Biggest concerns were what people thought when pointing camera at them whilst scanning, due to other pedestrians
had to get quite close to some people.”

• “I had a few people looking at me oddly thinking that I was recording them so had to explain that I was actually
recording the statue (object) which made me feel a bit uncomfortable.”

All comments from audio/haptic app users.

• i think its great for safety measures, can be used to improve AR features in current games

• Using audio cues greatly enhanced my scanning experience! Not only was I able to hear/feel whether my scans are
capturing the correct and proper mesh that is needed to generate the representation of the object, but having the
screen off and not displaying a live image helps me to feel less concerned that others perceived me as invading their
privacy. I feel much more confident scanning while the screen remains dark and I was still producing a good scan
using audio cues.

• The "bounding-box" not quite matching up over the object was quite frustrating, and I felt like I had to click it a
few times before I was happy with where it was. Wondering if a big flat rectangle isn’t the best way of expressing the
"thing" I’m meant to be pointing at? It felt a little bit unclear or unsatisfying.

• I felt a little insecure about being theft in the street, as I saw a person that looked like he had malicious intentions,
and walking around holding up your phone does not feel secure. Anyway, nothing happened, but it stressed me a
little bit.

• Very good experience, thank you for having me be a part of it. Loved seeing the scan output and feel that others
would benefit from seeing what they input eg Ingress Portal Scans

• No idea of what I really scanned ,

• the use of the audio is very inclusive although ‘good job’ feels a little childlike, dependent on game program this
would benefit being changed to suit audience. That said the audio was more beneficial than the vibration as it was
very light taps and more difficult to ascertain direction to point the phone The instant result of being able to see the
meshed scan is very beneficial and would be a great feature or side feature for game players

• I am on a prescribed medication that increases my heart rate

• Unsure if the audio/distance was related to the POI or the location where I was standing when starting the scan. The
overriding feel was that this was my physical start position.

• Great experience! I had fun!

• If others stand in front of the object it blocks the scan

• Audio cue would suit a city environment for user who usually have headphones in or a vibrate from your questions it
seems these are availible in different versions

• Was asked by a tour group to stop filming. Had to explain that I was not actually filming. Done! Audio etc tends to
blend in with background voices. A little difficult to decipher

• I think it went okay!!!

• From scanning [before] in Ingress its more natural to look at the poi when scanning landmarks, from playing Niantic
games for approx 9 years i have no concern in public using devices or walkng/waiting for public to be able to move
again

• Just hoping it all goes well first time

• all was good for me (:
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All comments from visual app users.

• A lot of people were taking photos with the statue after I started the scan, which was a little nerve wracking

• Some people weren’t sure if I was trying to record them or something but usually just moved out of the way

• It took a little while to get the object to properly match before scanning, but otherwise it was fun :)

• In a busy area it’s a bit hard scanning with a wide radius. If the radius can be smaller that helps and the angle of
the phone makes it tricky. Would be good if you can leverage wide angles on phones.

• It is cool but i dont understand the point

• I dislike the possibility of submitting video of strangers when uploading scans, so I probably won’t be scanning this
Agatha Christie monument in game

• As with scanning in game I would sooner avoid talking to strangers about the activity. I felt apprehensive before
doing the scanning about scanning this object in such a busy area in august

• Tutorial needs work, especially when taking steps to left or right

• It was quite busy with people who apologised for getting in the way

• i dont understand the point of scanning objects

• We can think of ways to improve the bugs as it’s quite laggy while moving.

• It felt weird to point at other peoples faces with a phone camera especially kids

• A group of people was posing for a picture and they got nervous with me "filming". I said I was not filming and I
offered to take a picture for them but they were uneasy and left.

• pikachu :)

• Biggest concerns were what people thought when pointing camera at them whilst scanning, due to other pedestrians
had to get quite close to some people.

• I had a few people looking at me oddly thinking that I was recording them so had to explain that I was actually
recording the statue (object) which made me feel a bit uncomfortable.
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