
DoubleTake: Geometry Guided Depth Estimation
Supplementary Material

Mohamed Sayed1 Filippo Aleotti1 Jamie Watson1,2 Zawar Qureshi1

Guillermo Garcia-Hernando 1 Gabriel Brostow1,2 Sara Vicente1 Michael Firman1

1Niantic 2UCL
https://nianticlabs.github.io/doubletake/

Contents

1. New evaluation masks 1

2. Additional results 2
2.1. Video – robustness to moving objects 2
2.2. Additional ablation results and details 3
2.3. Additional results and explanations for 3RScan 4
2.4. Revisit on 7Scenes with relocalization 5
2.5. Ours offline using alternative methods as hints. 5
2.6. Benefits of our depths for NeRF reconstructions 6
2.7. Additional qualitative depth map comparisons 7
2.8. Additional qualitative results on out-of-

distribution scenes 7

3. Full architecture details 7

4. Runtime and memory use 7

5. Training Data 7

6. Introspection – cost volume visualizations 7

1. New evaluation masks

Metrics for mesh evaluation. We follow existing works [1,
8] and report reconstruction metrics based on point to point
distances on point clouds sampled from the ground truth and
predicted meshes. The first metric, Accuracy, is the mean
of the distances between every point in the predicted point
cloud and its nearest neighbor in the ground truth point
cloud. The second metric, Completion is the reverse, the
mean of the distances between every point in ground truth
point cloud and its nearest neighbor in the predicted point
cloud. Chamfer is the mean of Accuracy and Completion.
Precision and Recall are the ratio of points whose Accu-
racy and Completion are less than 5cm respectively. And fi-
nally F-Score is the harmonic mean of Precision and Recall.
Methods may under-predict geometry (i.e. predict a mesh
which is not complete enough relative to the ground truth)

and achieve better Accuracy and Precision at the expense
of worse Completion and Recall. For example, a predicted
mesh with a single point perfectly placed on a ground truth
point will yield perfect Precision. Over-predicting geome-
try, for example placing a point everywhere in the volume,
will yield the perfect Completion and Recall at the expense
of Accuracy and Precision. We therefore consider Chamfer
and F-Score as the best representations of overall prediction
quality.

Incomplete ground truth and masking. The ground truth
meshes in ScanNetV2 are only as complete as the scan se-
quences allow. This means that there are gaps in the ground
truth geometry in areas the camera hasn’t seen. In practice,
methods may predict geometry not present in the ground
truth, and get unfairly punished on Accuracy and Precision.
To prevent this, previous work applied a mask to the pre-
dicted meshes when computing Accuracy and Precision, at-
tempting to ensure that only parts of the scene which are
also present in the ground truth mesh are evaluated.

Previous masking strategies. ATLAS [8] rendered depth
maps from a predicted mesh, invalidated rendered depths
using ground-truth depth map validity, re-fused it using
TSDF fusion, and finally computed point-to-point distances
on the re-fused meshes. The evaluation, however, is lim-
ited by the accuracy of the TSDF fusion step, and previ-
ous work [13] has shown that the ground truth mesh scores
poorly on this benchmark. TransformerFusion [1] iterate
on this and instead use a visibility volume mask to trim pre-
dictions when computing Accuracy. We visualize such a
mask in Fig 1. It is likely these masks were computed us-
ing ground-truth depth maps. Ground truth meshes do not
have the same extent as the ground truth depth maps, there-
fore not all predicted points are correctly masked out when
computing Accuracy. This problem is present in both the
ATLAS [8] and TransformerFusion [1] benchmarks. To il-
lustrate this, we use the Open3D [19] TSDF fuser to fuse
ground truth depth maps from the ScanNetV2 test set into
a mesh. We then evaluate these meshes using the evalua-

1

https://nianticlabs.github.io/doubletake/

GT and Masks GT Depth 3m GT Depth 4m GT Depth 8m
M

es
he

s
[1

]M
as

k
O

ur
M

as
k

Figure 1. Evaluation Mask Comparison. The left-most column shows the ground truth mesh, with masks from [1] and ‘ours’ overlaid (in
red and green respectively). We note that our mask is a tighter fit to the ground truth mesh. The remaining columns in the top row show
meshes generated using the ground truth depth maps, fused at 3m, 4m and 8m maximum depth values. Notice that these meshes include
geometry not present in the ground truth. The remaining cells in the table show the meshes at the top of each column masked using either
the mask from [1] (row 2) or ‘our’ masks (row 3). Each mask’s mesh is colored with an error map evaluating the error of each of the fused
meshes. The error goes from blue (low error) to red (high error). Row two, which uses masks from [1], has many areas of high error shown
in red. The final row shows the error maps when using our masks. Our masks more accurately reflect the geometry in the ground truth,
which means that there are fewer areas of high (red) error in the meshes when using our masks.

tion protocol and masks from [1] in Table 1 (top). As we
increase the maximum depth we fuse to, the mesh scores
worse on Accuracy and Precision as there are now more
predicted points outside the range of the ground truth mesh
that don’t have a close neighboring ground truth point.

Our proposed masks. We instead build visibility volumes
using rendered depth maps of the ground-truth meshes. We
initialize a volume using a ground truth mesh’s extents with
a 0.5m buffer in all axes. For every view in a sequence, we
render the ground truth mesh into a depth map. We then
project each voxel in the volume down to the current view,
check if the projected pixel lands in the image, and z-test
the projected pixel against the rendered mesh depth map. If
the projected depth for a point is less than the mesh render’s
depth plus a buffer of 30cm, then that voxel is marked as
visible. We visualize these masks and compare them with
those from [1] in Fig 1. We also use these masks when
computing the Accuracy error on meshes from fused ground
depth maps in Table 1. The Accuracy and Precision scores
do not fall as drastically with increased maxed depth as with
the masks from [1], indicating that these masks allow for a
fairer protocol for evaluation.

Acc↓ Comp↓ Chamfer↓ Prec↑ Recall↑ F-Score↑

[1
]M

as
ks GT Depth Fused 3m 2cm 0.80 1.76 1.28 .986 .954 .968

GT Depth Fused 4m 2cm 3.87 1.16 2.52 .899 .986 .938
GT Depth Fused 5m 2cm 5.90 1.27 3.59 .861 .980 .911
GT Depth Fused 8m 2cm 6.00 1.35 3.67 .855 .977 .906

O
ur

M
as

ks GT Depth Fused 3m 2cm 0.46 1.76 1.11 .995 .954 .973
GT Depth Fused 4m 2cm 0.84 1.16 1.00 .970 .986 .978
GT Depth Fused 5m 2cm 1.11 1.27 1.19 .953 .980 .966
GT Depth Fused 8m 2cm 1.34 1.35 1.34 .940 .977 .957

Table 1. Fused GT Mesh Evaluation Comparison on Scan-
NetV2. Here we fuse the ground truth depth maps into a vol-
ume and evaluate the mesh against the ground truth meshes. We
do this with two approaches to masking non-visible regions: at
top, the approach from [1], and at bottom, our proposed approach.
The scores from [1] degrade as we increase the maximum depth
that depths are fused at. In contrast, our scores remain more con-
stant. Furthermore, our approach gives overall significantly better
scores, which suggests that our masks are more accurate repre-
sentations of the ground truth visibility. See Section 1 for more
details.

2. Additional results

2.1. Video – robustness to moving objects

In Figure 2 we show some frames from our video of our
system estimating depth where there are moving objects.
We show how we can reliably estimate depth for both the

2

Input image Ours (incremental) Geometry Hint Geometry Hint
Depth Confidence

Figure 2. Qualitative results for a scene with moving objects

static scene and the moving person in the scene. As the
person moves through the scene, the rendered depth map
from the geometry hint has some artefacts and is unreliable
in areas the moving object has recently visited. This un-
reliability is reflected in the confidence we also provide to
the network. Our final prediction from our network ignores
the poor quality regions of the hint and produces good qual-
ity depths. Please see our supplementary video for the full
sequence.

2.2. Additional ablation results and details

Table 2 extends the equivalent ablation table in the main
paper, with additional rows and columns. We include a
new row , giving an additional ablation in the spirit of [10].
We also include rows K, L and M, ablating our ‘offline’
method. We also include an additional column, giving lo-
gRMSE scores (omitted from the main paper due to space
and readability constraints).

Here we give more details of our ‘in the sprit of’ abla-
tions:

Ablation details for row I – Ours (incremental, fast).

For this version of our model, we substitute some of the
components with lighter and faster networks. We use a
slimmed down decoder with simpler skip connections and a
ResNet18 for the image-prior encoder.

Ablation details for row – [10]. [10] describe a method
for modulating a cost volume given access to ground truth
point clouds at 3% sparsity when rendered down. We use
the same modulation strategy in place of out Hint MLP in
our model and train it on the same corpus of rendered mesh
data. We use the same parameters for gaussian modulation
along a ray as described in the paper and codebase, and ap-
ply it on every ray on output from the matching MLP. We
test this model in both offline and online modes. We ob-
serve that given no access to a confidence on the rendered
depth map, the model does not learn to maximize the use of
the incoming hint, falling behind our model in both modes.

Ablation details for row E – [18]. In this ablation experi-
ment, we replace our Hint MLP with a strategy inspired by
SimpleMapping [18]. Specifically, the proposed hint MLP
is removed, and our rendered geometry hint depth maps are
first processed by a depth completion network [17], which

3

Abs Diff↓ Abs Rel↓ Sq Rel↓ RMSE↓ logRMSE↓ δ < 1.05↑ δ < 1.25↑
O

nl
in

e
A Ours without Hint MLP (as in SimpleRecon [13]) .0873 .0430 .0128 .1483 .0685 74.12 98.05
B Ours w/ hint, without confidence .0863 .0392 .0129 .1529 .0665 77.81 98.02
C Ours w/ hint & confidence to cost volume encoder .0890 .0438 .0130 .1506 .0695 73.39 97.95
D Ours w/ warped depth as hint .0889 .0436 .0130 .1492 .0689 73.26 98.06
E Ours w/ hint-based variable depth planes [18] .0821 .0405 .0121 .1432 .0664 76.67 98.19
E SimpleRecon [13] w/ TOCD [6] .0880 .0437 .0134 .1505 .0702 74.19 97.83

Ours w/ hint cost volume modulation [10] .0773 .0372 .0112 .1381 .0632 79.52 98.34
F Ours w/ single MLP for matching and hints .0773 .0371 .0112 .1381 .0629 79.56 98.35
G Ours (no hint on inference) .0870 .0428 .0128 .1477 .0683 74.35 98.02
H Ours (incremental, fast) .0826 .0400 .0125 .1473 .0679 77.14 98.05
I Ours (incremental) .0767 .0369 .0112 .1377 .0629 79.93 98.35

O
ffl

in
e J SimpleRecon [13] (offline) .0812 .0399 .0118 .1413 .0652 77.02 98.26

K Ours w/ hint, without confidence .0635 .0309 .0092 .1228 .0566 86.08 98.64
L Ours w/ hint cost volume modulation [10] .0651 .0320 .0094 .1242 .0575 84.92 98.61
M Ours (offline) .0627 .0306 .0092 .1225 .0565 86.46 98.62

Table 2. Ablation evaluation. Scores are depth metrics on ScanNetV2. This table is a copy of the table in the main paper but with the
addition of the logRMSE metric, plus rows K, L, M, and N. and . (We use for the additional row with cost volume modulation so letters
remain consistent between the main paper and supplementary). See the text for descriptions of these variants.

Training data generation strategy Abs Diff↓ Abs Rel↓ Sq Rel↓ RMSE↓ logRMSE↓ δ < 1.05↑ δ < 1.25↑
Ground truth as hint .0954 .0488 .0176 .1637 .0760 72.13 97.26
Full mesh renders .0789 .0382 .0113 .1391 .0641 78.29 98.27
Full and partial mesh renders .0767 .0369 .0112 .1377 .0629 79.93 98.35

Table 3. Comparison of different strategies to generate training data for the geometry hint.

generates dense depth maps. Then, a SimpleRecon model
exploits this depth map to build a cost volume: for each
pixel, 64 depth plane hypotheses are linearly spaced around
the depth value indicated by the dense depth map, using a
0.04m space interval. Moreover, features from the depth
completion network are concatenated to SimpleRecon as
described in [18]. The two networks are trained sequen-
tially: first, we train the depth completion network from
[17] to complete depth maps rendered from the mesh (which
generally contain holes due to occlusions, camera motion
etc); then we train SimpleRecon keeping the depth com-
pletion network frozen. At training time, we train both the
model adopting the same hints and augmentation strategies
used to train our proposed model, enforcing the losses de-
scribed in [18] and [13] to the depth completion network
and SimpleRecon respectively. It is worth noting that, dif-
ferently from SimpleMapping, at inference time our depth
hints are not inferred by a sparsified ground truth; instead
they are directly rendered from the predicted mesh. More-
over, compared to our proposed strategy, this solution re-
quires an additional encoder-decoder network.

Ablation details for row F – SimpleRecon [13] w/ TOCD
[6]. Recall that TOCD [6] uses a point cloud of the scene
to process per frame depth estimates into temporally con-
sistent depth estimates. In this ablation experiment we use
the reference implementation of TOCD [6] and the provided
scene point clouds. We use SimpleRecon depth maps as in-
put to their pipeline instead of the original DPT [11] depth

maps, which are less accurate since DPT is a monocular
depth prediction system. We use the pretrained models pro-
vided by the authors along with predictions from SimpleRe-
con. In the original implementation, the input depths to the
temporal model are scaled and shifted using the ground-
truth depths. However, we use predicted depths for such
scaling and shifting instead.

Ablation on different strategies to generate training
data. In table 3 we present results for an additional com-
parison of different strategies to generate training data. In
particular, we compare the performance of different models
that were trained using different depth hints. Ground truth
as hint receives the ground truth depth map as hint at train-
ing time. Full mesh renders uses depth renders of meshes
covering the full scenes and Full and partial mesh renders
uses both depth renders of full scenes and depth renders of
partial scenes. For visualizations of full and partial renders
see figure 8. All models are evaluated in incremental mode.
The results validate our choice of using both full and partial
depth renders as our training data generation strategy.

2.3. Additional results and explanations for 3RScan

Table 4 is a copy of Table 5 in the main paper, but with
the additional metrics of Abs Rel and logRMSE. The first
two rows in this table present simple baselines we devised
to generate depth for the current camera viewpoint. Like
‘ours’, these baselines assume we have previously visited a
location and generated geometry at that location. Also like

4

Abs Diff↓ Abs Rel↓ Sq Rel↓ RMSE↓ logRMSE↓ δ < 1.05↑ δ < 1.25↑
Rendered depth from TSDF .2506 .2021 .1293 .3338 .2711 23.53 67.97
Densified rendered depth .1763 .1499 .0629 .2264 .1706 30.61 81.69
SimpleRecon [13] .1350 .1025 .0437 .1879 .1308 46.88 89.32

Ours (no hint) .1346 .1026 .0449 .1879 .1312 47.28 89.39
Ours (incremental) .1255 .0948 .0395 .1787 .1258 48.76 90.47
Ours (revisit) .1182 .0892 .0368 .1710 .1208 50.24 91.78
Ours (revisit, pose noise) .1199 .0908 .0372 .1725 .1222 49.46 91.56

Table 4. Long-term hints using 3RScan – full metrics. This table is a copy of Table 5 in the main paper, with the addition of Abs rel and
logRMSE metrics.

Abs Diff↓ Sq Rel↓ RMSE↓ δ < 1.05↑ δ < 1.25↑
Ours (revisit) .0911 .0138 .1518 70.13 97.58
Ours (revisit Ace [2] poses) .0912 .0137 .1510 69.80 97.64
Ours (no hint) .1088 .0166 .1678 61.02 97.07

Table 5. Long-term hints using 7Scenes. Here we compare Ours (revisit) with a variant where alignment between scans is estimated
using a the relocalization algorithm Ace [2]. Notice that there is only a very slight degradation in depth metrics, highlighting the robustness
of our method to noisy estimates of pose.

‘ours’, the baselines assume the current sequence is cap-
tured in the same camera coordinate frame as the previous
visit to the location. We now describe these baselines in
more details:

Rendered depth is a baseline which simply renders a
depth map from the previous geometry from the cur-
rent camera viewpoint, and uses this as the final depth
prediction. Some pixels may not have a valid depth
generated, for example if a surface wasn’t viewed in
the previous visit to this location. For these pixels, we
interpolate new values based on neighboring valid pix-
els.

Densified rendered depth solves the missing pixel prob-
lem in a more involved way, where we complete these
missing pixels via a machine-learned densification net-
work. For fairness with ‘ours’, we implement a densi-
fication network based on [13]. This network is trained
to take as input an incomplete depth map, where miss-
ing pixels are give a label -1, plus an RGB image. The
network is trained to output a complete depth map.
This network is trained and evaluated in monocular
mode, so does not include a cost volume. This network
is trained on ScanNetV2 using the same set of partial
and full mesh depth renders we use train our models.

Further details on ‘Ours (revisit, pose noise)’ experi-
ment. For this experiment, we add ϵt ∼ N (0, 4cm) to each
component of translation, and ϵr ∼ N (0, 0.022) to each
component of rotation.

2.4. Revisit on 7Scenes with relocalization

In Table 5 we show further results for the revisit variant
of our method, this time using the 7Scenes dataset. Here,

we simulate a real use case whereby a user has previously
scanned a scene, and then returns to the same scene and re-
localizes using [2]. In practice, we first build a TSDF using
a training sequence, before running [2] on each test image
to a estimate per frame pose. These predicted poses are then
used to render our hints for input to our model. Notice that
even with noisy estimated poses from a relocalization algo-
rithm (row 2), our method still performs very competitively
when compared to using ground truth poses (row 1).

Note that for this experiment we use the test split from
[2], which differs from test split used for the results in the
main paper.

2.5. Ours offline using alternative methods as hints.

In Table 6 we show results for the offline variant of our
model, where the initial TSDF is built using different meth-
ods, and the second pass is run as normal using our network,
where we render the extracted mesh into each frame to gen-
erate a hint. In each case our model performs well, greatly
improving over the initial predictions. This demonstrates
that our method is robust to where the hints come from,
handling hints which differ to those seen during training.

The best performing hybrid method, Ours + FineRe-
con [14] as hint, surpasses all other baselines on all metrics.
While in practice this system may be difficult to deploy and
is computationally expensive, we are excited that our sys-
tem can work in combination with FineRecon [14] to gen-
erate a new state-of-the-art. Since FineRecon [14] estimates
the TSDF directly using a 3D CNN there are no TSDF con-
fidences available, and so we set confidence to 1.0 for pixels
with a valid rendered depth value, and 0 otherwise. Ad-
ditionally, depth scores are obtained by rendering the final
predicted mesh into each frame and comparing to ground

5

Abs Diff↓ Abs Rel↓ Sq Rel↓ δ < 1.05↑ Chamfer↓ F-Score↑
DeepVideoMVS[4] .1186 .0583 .0190 60.20 6.73 .579
Ours + DeepVideoMVS[4] as hint .0667 .0330 .0098 84.09 5.12 .700

SimpleRecon[13] (offline) .0812 .0399 .0118 77.02 5.05 .687
Ours + SimpleRecon[13] as hint .0627 .0306 .0092 86.46 4.50 .738

FineRecon[14] .0812 .0389 .0265 85.60 4.99 .710
Ours + FineRecon[14] as hint .0574 .0279 .0089 89.03 4.15 .772

Table 6. Ours offline with alternative hints. We evaluate our model in offline mode, using alternative methods to generate our hints. In
all cases, we greatly improve over the initial predictions.

Vanilla w/ GT Depth w/ Ours offline

Figure 3. Qualitative Comparison of NeRFs on a ScanNetV2 scene. A NeRF trained using our depths as input produces higher quality
novel views when compared with the vanilla baseline. Note the fixed halo artifacts on the wall in the first row, on the couch in the second
row, and on the wall to the right of the bookshelf in the third row.

truth depth maps.
Note that all the ‘Ours +’ rows in the table use the same

model used for Ours in the main paper, without retraining.
The only difference vs. the main paper is the geometry used
for the hint.

2.6. Benefits of our depths for NeRF reconstructions

In this section we present an interesting application of
our depth maps for improving NeRF renders. NeRFs [7]
are a ubiquitous representation for image-based rendering.
NeRFs can though suffer from artefacts. To help to reduce
artefacts or to improve the underlying geometry, depths can
be used in training [3, 12]. Here, we use a nerf variant ‘ner-
facto’ (from NerfStudio [16]) to train a NeRF on a Scan-
NetV2 sequence, and show that using our depths can help

to reduce artefacts in the final renders.

Approach First, we cropped the ScanNetV2 images (and
their corresponding intrinsics) to remove the black border
pixels from the rectification. We create a dataset from the
images where we have predictions from our offline (two
pass method). We then trained a NeRF with 90% of the
images as training images. We trained three NeRF variants,
each using the same RGB images:
• Vanilla NeRF, using the nerfacto default arguments.
• w/ GT Depth, where we pass ground truth depth maps to

enable a better NeRF representation.
• w/ Ours offline, where we pass depth maps estimated

from our offline (two-pass) reconstruction.
For all variants, we render novel views using 5% of the im-
ages, sampled from the images not in the training set.

6

Results Some example renders are shown in Figure 3,
where we observe that our novel views from the NeRF reg-
ularized using our depths yields the same qualitative im-
provement as from the ground truth depth.

2.7. Additional qualitative depth map comparisons

Figure 4 shows additional depth results comparing our in-
cremental approach to depth maps from [13] and [4]. As
with Figure 5 in the main paper, here we see the better fi-
delity to the ground truth, better small details, and better
overall scene accuracy using our method. Figure 5 shows
the benefit that ours (offline) brings over ours (incremen-
tal).

2.8. Additional qualitative results on out-of-
distribution scenes

Figure 6 gives additional results on out-of-distribution se-
quences. These results use our ScanNetV2-trained model,
and show results when evaluated in offline mode. We ob-
serve that our model transfers well to these new scenes.
Figure 7 compares our meshes with those produced from
FineRecon [14]. We note that our meshes are cleaner, more
accurate and have less unwanted background noise vs. [14].

3. Full architecture details
As described in the main paper, with the exception of our
‘Hint MLP’ our network follows the architecture of [13].
For completeness, we give a brief overview of this architec-
ture here:

The decoder is based on UNet++ [20]. Each block is
a residual BasicBlock from [5], each comprising 256,
128, 64, and 64 channels. Activations are LeakyRelus with
a slope of 0.2. The image prior encoder uses an Efficient-
NetV2 [15], while the matching feature encoder uses the
first two blocks of ResNet18 [5]. The cost volume and
image feature encoder is based on [4]. These also use
BasicBlocks, with 64, 128, 256 and 384 channels per
layer.

The matching MLP has an input size of 202 dimen-
sions, followed by two hidden layers of 128 dimensions
each, then an output neuron of dimension 1. Our hint MLP
accepts an input with three dimensions, followed by two
hidden layers of 12 dimensions each, then an output neuron
of dimension 1.

Importantly, both of our modes (incremental and offline)
use the same network weights.

4. Runtime and memory use
The main paper gives the overall timings of our approach
vs. some competing depth and reconstruction systems. Ta-
ble 7 gives a more detailed breakdown of the timings for
various parts of our system in incremental mode. Table 8

Per frame incremental operations Time per frame (ms)

Marching cubes 9.4
Mesh depth render 9.2
Confidence sampling 0.69
Model forward pass 52.8
TSDF fusion 4.54
Total time 76.63

Table 7. Incremental timings Average per frame timings for the
ScanNetV2 test set on an Nvidia A100, when run in incremental
mode with batch size 1.

Per scene offline operations Time per scene (s)

First stage model forward pass 8.75
First stage TSDF fusion (4cm) 0.66
Marching cubes (run once) 0.01
Second stage mesh depth render 1.34
Second stage confidence sampling 0.17
Second stage model forward pass (with caching) 1.88
Second stage TSDF Fusion (2cm) 1.04
Total time 13.9

Table 8. Offline timings Average per scene timings for the Scan-
NetV2 test set on an Nvidia A100, when run offline with batch
size 8.

gives a more detailed breakdown of the timings for various
parts of our system in offline mode.
Memory use The additional memory required of our
method compared to SimpleRecon [13] is relatively small.
For our TSDF reconstructions we store two float16s per
voxel, one for the TSDF value and one for the confidence.
At 2cm voxel resolution, the TSDF for the largest scene in
Scannet is 148MB of memory, and the extracted mesh is
9MB.

For very large scenes we use voxel hashing [9], based
on the implementation in Open3D [19]. Voxel hashing is
highly memory efficient, only storing data for voxels which
lie inside the observed truncation band (we use a band of
6cm). On average, voxel hashing requires roughly 6% of
the memory of dense volumes [9].

5. Training Data
Section 3.5 in the main paper gives an overview of the dif-
ferent hints we generate for training data. Figure 8 shows
examples of the full and partial training hints we generate
at training time.

6. Introspection – cost volume visualizations
Figure 9 gives some introspection into why our method out-
performs SimpleRecon [13]. Like Figure 5 in the main
paper, Figure 9 shows that our predictions are better than
[13]. However, in this figure we additionally visualize the
winner-takes-all depth map from the cost volume. To gen-
erate this visualization, we take the final D×H×W cost

7

Input image Ground truth Ours incremental SR [13] DVMVS [4]

Figure 4. Additional qualitative depth results on ScanNetV2 for incremental

volume (see e.g. Figure 3 in the main paper), and take an
argmax along the depth dimension. This gives an H×W
image, indicating the depth bin in the cost volume which
had the ‘best’ match between source and target views. We
notice that our winner-takes-all depth map, which is boosted
by our geometry hint, is significantly more clear and simi-

lar to the ground truth than the winner-takes-all depth map
from [13]. Figure 10 shows the equivalent visualization for
offline mode; again, we see the benefits that our cost volume
construction brings.

8

Input image Ground truth Ours (incremental) Ours (offline)

Figure 5. Qualitative depth results ours incremental vs ours offline. Note, most frames are at the very beginning of the sequence. The
first four images show examples where ours (offline) gives overall better scale prediction. The last four images show examples where ours
(offline) improves small details. 9

Figure 6. Other examples of out-of-distribution scenes. On the left we show some example frames from the input sequence, which was
casually captured with a smartphone. On the right we show renders of the resultant mesh. As we use TSDF fusion, we can easily encode
extra channels such as RGB as shown here.

10

FineRecon [14] Ours

Figure 7. Comparing our performance on out-of-distribution scenes against [14]. We show meshes here untextured, as this allows
easier inspection of the geometry quality. Please see Figure 6 here and Figure 9 in the main paper for some example RGB input images for
these scenes. We ran FineRecon at a 6cm voxel size. When we tried running at an effective resolution of 1cm as in the paper, we ran out
of memory with a request of 205GBs above what our A100 GPUs capacity of 40GBs.

11

Partial Hint Full Hint
Image Ground truth Depth Render Confidence Depth Render Confidence

Figure 8. Examples of training data. Partial hints are generated from partial TSDFs, generated only using frames up to the current
training frame. Full hints are generated from a full TSDF, assuming all frames in the scene have been observed.

Input image Depth render Ours (incremental) SR [13] (online)

Ground truth Confidence Cost volume - ours Cost volume - SR [13]

Figure 9. Cost volume visualizations for online methods. We compare the winner-takes-all depth map from the cost volume obtained by
our method and SimpleRecon [13], both in online mode. Ours is less noisy and looks more similar to the ground truth depth map.

12

Input image Depth render Ours (offline) SR [13] (offline)

Ground truth Confidence Cost volume - ours Cost volume - SR [13]

Figure 10. Cost volume visualizations for offline methods.

13

References
[1] Aljaz Bozic, Pablo Palafox, Justus Thies, Angela Dai, and

Matthias Nießner. TransformerFusion: Monocular RGB
scene reconstruction using transformers. NeurIPS, 2021. 1,
2

[2] Eric Brachmann, Tommaso Cavallari, and Victor Adrian
Prisacariu. Accelerated coordinate encoding: Learning to
relocalize in minutes using RGB and poses. In CVPR, 2023.
5

[3] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised NeRF: Fewer views and faster
training for free. In CVPR, 2022. 6

[4] Arda Duzceker, Silvano Galliani, Christoph Vogel, Pablo
Speciale, Mihai Dusmanu, and Marc Pollefeys. Deep-
VideoMVS: Multi-view stereo on video with recurrent
spatio-temporal fusion. In CVPR, 2021. 6, 7, 8

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 7

[6] Numair Khan, Eric Penner, Douglas Lanman, and Lei Xiao.
Temporally consistent online depth estimation using point-
based fusion. In CVPR, 2023. 4

[7] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 6

[8] Zak Murez, Tarrence van As, James Bartolozzi, Ayan Sinha,
Vijay Badrinarayanan, and Andrew Rabinovich. Atlas: End-
to-end 3D scene reconstruction from posed images. In
ECCV, 2020. 1

[9] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger.
Real-time 3d reconstruction at scale using voxel hashing.
ACM Transactions on Graphics (TOG), 2013. 7

[10] Matteo Poggi, Andrea Conti, and Stefano Mattoccia. Multi-
view guided multi-view stereo. In IROS, 2022. 3, 4

[11] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In Proceedings of
the IEEE/CVF international conference on computer vision,
2021. 4

[12] Barbara Roessle, Jonathan T Barron, Ben Mildenhall,
Pratul P Srinivasan, and Matthias Nießner. Dense depth pri-
ors for neural radiance fields from sparse input views. In
CVPR, 2022. 6

[13] Mohamed Sayed, John Gibson, Jamie Watson, Victor
Prisacariu, Michael Firman, and Clément Godard. Sim-
pleRecon: 3D reconstruction without 3D convolutions. In
ECCV, 2022. 1, 4, 5, 6, 7, 8, 12, 13

[14] Noah Stier, Anurag Ranjan, Alex Colburn, Yajie Yan, Liang
Yang, Fangchang Ma, and Baptiste Angles. Finerecon:
Depth-aware feed-forward network for detailed 3D recon-
struction. In ICCV, 2023. 5, 6, 7, 11

[15] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models
and faster training. In ICML, 2021. 7

[16] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David

McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In ACM
SIGGRAPH 2023 Conference Proceedings, 2023. 6

[17] Alex Wong and Stefano Soatto. Unsupervised depth comple-
tion with calibrated backprojection layers. In ICCV, 2021. 3,
4

[18] Yingye Xin, Xingxing Zuo, Dongyue Lu, and Stefan
Leutenegger. SimpleMapping: Real-Time Visual-Inertial
Dense Mapping with Deep Multi-View Stereo. In ISMAR,
2023. 3, 4

[19] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 1, 7

[20] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang. UNet++: A nested U-Net
architecture for medical image segmentation. In Deep learn-
ing in medical image analysis and multimodal learning for
clinical decision support, 2018. 7

14

	. New evaluation masks
	. Additional results
	. Video – robustness to moving objects
	. Additional ablation results and details
	. Additional results and explanations for 3RScan
	. Revisit on 7Scenes with relocalization
	. Ours [sec:sourcesofgeometry]offline using alternative methods as hints.
	. Benefits of our depths for NeRF reconstructions
	. Additional qualitative depth map comparisons
	. Additional qualitative results on out-of-distribution scenes

	. Full architecture details
	. Runtime and memory use
	. Training Data
	. Introspection – cost volume visualizations

