
PlaceIt3D: Language-Guided Object Placement in Real 3D Scenes

Ahmed Abdelreheem2,∗ Filippo Aleotti1 Jamie Watson1 Zawar Qureshi1 Abdelrahman Eldesokey2

Peter Wonka2 Gabriel Brostow1,3 Sara Vicente1 Guillermo Garcia-Hernando1

1Niantic Spatial 2KAUST 3UCL

https://nianticlabs.github.io/placeit3d/

3D Asset

“Place the asset so that it is 
hidden from the window and in 
the vicinity of the toilet. The 

asset should be oriented 
towards the cabinet.”

Placement 
Result

3D Scene Textual Prompt3D Asset

“Put the asset so that it is 
between the window and 

the television. It should be 
on the table.”

Placement 
Result

3D Scene Textual Prompt

Figure 1. Language-guided 3D Object Placement: Our new task involves finding a valid placement for an asset according to a text
prompt. This task requires semantic and geometric understanding of the scene, knowledge of the asset’s geometry, and reasoning about
object relationships and occlusions. The colored dots represent the positions of the objects mentioned in the prompt (provided only for
visualization purposes and not given to the model), while the yellow arrow indicates the predicted frontal direction of the asset.

Abstract

We introduce the novel task of Language-Guided Ob-
ject Placement in Real 3D Scenes. Our model is given a
3D scene’s point cloud, a 3D asset, and a textual prompt
broadly describing where the 3D asset should be placed.
The task here is to find a valid placement for the 3D asset
that respects the prompt. Compared with other language-
guided localization tasks in 3D scenes such as grounding,
this task has specific challenges: it is ambiguous because
it has multiple valid solutions, and it requires reasoning
about 3D geometric relationships and free space. We inau-
gurate this task by proposing a new benchmark and evalua-
tion protocol. We also introduce a new dataset for training
3D LLMs on this task, as well as the first method to serve
as a non-trivial baseline. We believe that this challenging
task and our new benchmark could become part of the suite
of benchmarks used to evaluate and compare generalist 3D
LLM models.

1. Introduction

At two to three years old, neurotypical children learn to
follow two-step instructions like “Get your shoes and put
them on the shelf” [33]. These may seem like simple tasks,
but children need time to understand basic vocabulary and
to learn physical affordances of both 3D objects and scene
layout. Perhaps AIs could obtain similar capabilities.

In this paper, we focus on the novel task of language-
guided 3D object placement in a 3D scene. Like in the shoe
example, the specific task here is to find a valid placement
of the object among multiple configurations that satisfy the
instructions. It must also respect the physical constraints of
the space and the 3D asset (see Figure 1). Excelling at this
task would unlock applications, such as instructing a robot
using language to move a real object to a new location. It
also has applications in augmented reality (AR) or virtual

∗Work done during an internship at Niantic.

1

https://nianticlabs.github.io/placeit3d/


reality (VR). For example, a player of a virtual game can
use language to give orders to virtual characters or move
assets in a scene.

LLMs have recently been shown to be effective for tasks
related to 3D scene understanding [13, 17, 46], particularly,
visual question answering [14], grounding [18], and cap-
tioning [27]. Our task is most related to grounding; how-
ever, ours has a few properties that make it more challeng-
ing. First, grounding usually has a well-defined and unique
solution, while our task is inherently ambiguous because
multiple valid solutions exist. The ambiguity of our task
makes defining a benchmark and constructing a training
dataset non-trivial, since both have to account for the va-
lidity of multiple solutions. Second, the task cannot be eas-
ily solved by using 2D information alone, since many of
the constraints are geometric and require 3D reasoning. For
example, a language instruction like “place the asset in be-
tween the chair and the table, facing the television” requires
reasoning about free space as well as geometric relation-
ships, which are intrinsically 3D. Finally, the task requires
us to analyze not only the scene but also the asset. This is
because the size and shape of the asset constrain the set of
valid placements. For example, given the same scene and
language prompt, we expect a large object to have fewer
valid possible placements than a smaller object.

The highlight of this paper is the introduction of a chal-
lenging novel task: language-guided 3D placement. To the
best of our knowledge, there are no benchmarks or datasets
that meet our needs, so we drive progress on this task with
three main contributions, summarized here:

• We provide a benchmark for language-guided placement
containing 3,300 evaluation examples, where each exam-
ple is composed of a real scene from ScanNet [10], an as-
set from the PartObjaverse-Tiny dataset [40], and a guid-
ing language prompt. The benchmark includes an eval-
uation protocol that takes into account the ambiguity of
the placement task, which in general, has multiple valid
solutions. This benchmark will allow future methods to
evaluate progress on this challenging task.

• We propose PlaceIt3D, a large-scale dataset that can
be used for training 3D LLM models for the task of
language-guided placement. Similarly to the benchmark,
it uses real scenes from ScanNet [10] and assets from
PartObjaverse-Tiny [40]. Each example in the data set
(made up of a scene, asset, and prompt triplet) includes
all the valid placements. This training corpus contains a
total of 97,020 training and 2,619 validation samples.

• We introduce a proto-method for this guided placement
task that we call PlaceWizard. It builds on recent work
in 3D LLMs [17] and outperforms baselines. It employs
a modified form of spatial aggregation, an asset encoder,
and rotation prediction.

2. Related Work
3D Scene understanding and language. Scene under-
standing is a long-standing challenge in computer vision,
crucial for improving autonomous systems [28] and aug-
mented reality (AR) [22]. A popular approach to tackle
problems of scene understanding involves building a 3D
representation of the scene and processing it using task-
specific networks [9, 16, 29, 31]. Now, Large Language
Models (LLMs) are rapidly expanding beyond textual in-
puts to encompass multi-modal data, paving the way to-
ward more human-like interactions. LLaVa [25] was the
first method to extend instruction tuning protocols to the vi-
sion domain. Subsequent works like [21, 23] unlocked mul-
tiple images as input, spatial reasoning capabilities [4, 5, 8],
and segmentation [19]. Particularly relevant to our work
are those LLM-based systems that process 3D input data.
To tackle tasks such as grounding or question answering,
3D-LLM [13] takes its input from point clouds with fea-
tures extracted from 2D images. Reason3D [17] employs
a pre-trained point encoder to extract features from point
clouds. These features are then projected into the embed-
ding space of the LLM using Q-Former [24]. Subsequently,
a decoder infers object masks based on the LLM’s output.
ScanReason [46] interleaves grounding and reasoning steps
at inference time. Noticeably, none of these methods is de-
signed for object placement, which requires reasoning not
just about objects present in the scene, but also about empty
space, relationships between objects, and the input asset.
Datasets for language-guided 3D tasks. Multiple datasets
for language-guided 3D tasks [1–3, 6, 7, 43] have been built
on top of ScanNet [10], taking advantage of the readily
available annotations. These datasets provide examples and
annotations for new tasks such as text-based object ground-
ing [1, 2, 6, 18], visual question answering [3], caption-
ing [7], and navigation [43]. More recent works have also
proposed larger-scale [38] and synthetic datasets [39] for
3D language tasks. Although our data set and benchmark
are also built on top of ScanNet, none of the existing 3D
datasets focuses on the task of guided placement, with its
challenges and range of acceptable placements, making our
dataset complementary to the existing ones.
Object placement in 2D images and 3D scenes. Several
existing methods [26, 30, 32, 44, 47] address the problem
of common-sense placement in images, i.e. predicting 2D
image regions where asset placement is semantically plau-
sible, such as a book on a bookshelf. While this is also
a placement task, we emphasize that our language guided
placement task is intrinsically different, since the placement
is directed by the language instructions not by common-
sense principles. More similar to ours, Robopoint [42] ad-
dresses the task of language-guided placement in 2D im-
ages. Their placement predictions are lifted to 3D by using
depth maps. In contrast, our method uses the full 3D scene

2



Asset

Scene

0° 45°

90° 135°

…

Scene graph

constraints: “between”
anchors: [“sofa”, “bed”]

constraints: “near”, 
anchors: “backpack”

constraints: 
[“near”,”between”]
anchors: 
[[“backpack”],[“sofa”, “bed”]]

… Dense placementsRotations

(b) (c) (d) (e)

(f)

(a)

Figure 2. PlaceIt3D dataset creation. Given a scene and an asset as input (a) the goal is to create a prompt (f) and corresponding mask M
of valid placements (e). We start by finding the set of points which are physically plausible placements, shown in red in (b). We consider
eight equally spaced rotation angles, which condition the valid placements. For this example, angle 0◦ has more valid placements than
45◦. To generate the language constraints, we use the ground truth scene graph (c). Object anchors are selected from the scene graph
and combined with relationship types to create a constraint and corresponding validity mask (d). The different placement constraints are
combined in the final output by intersecting the validity masks (e) given a mask of valid dense placements. Based on each selected set of
anchors and constraint relationships, a natural language prompt is created using templates (please, see supplemental for more details).

as input, which provides more context and allows reasoning
about anchor objects which might be out of view in a sin-
gle image. The concurrent work, FirePlace [15], proposes
a zero-shot pipeline to insert 3D objects into synthetic 3D
scenes using common-sense reasoning. While we share the
geometric reasoning aspect of the task, our approach goes
beyond common-sense reasoning by explicitly incorporat-
ing purely geometric constraints, such as object rotation
and visibility. Additionally, our method operates beyond
synthetic scenarios, as it focuses specifically on reasoning
within predicted 3D scenes and objects.

3. Language-Guided 3D Object Placement

We introduce the task of language-guided 3D object place-
ment. Given the pointcloud of a 3D scene, a 3D asset,
and text describing where the asset should be placed in the
scene, the goal is to find a valid position and orientation
for the asset that is physically plausible and adheres to the
language prompt.

This task is inherently ambiguous because, in general,
multiple valid placements exist. The multiple placements
in Fig. 2 (c) demonstrate this ambiguity and illustrate the
complexity of our task when compared with related tasks
like object grounding, which typically has a single solution.
Simplifying assumptions. Given the ambiguity and com-
plexity of our task, we make some simplifying assumptions
to make the problem tractable. First, we assume the vertical
orientation of the scene is fixed and given by the Z-axis. We
also assume we know the vertical orientation of the asset as

well as its frontal direction. The asset is always placed on
a horizontal surface, and only the yaw angle is considered,
i.e. rotation around the vertical axis.

3.1. Physical plausibility and language constraints
We stipulate that valid placement in this task should take
into account at least a specific set of commonly-occurring
constraints. The first constraint is physical plausibility,
which enforces that all the placements are realistic and vi-
able. A placement is viable if the object does not intersect
with the scene mesh. This constraint is agnostic to the lan-
guage instructions and must always be satisfied.

Beyond physical plausibility, the language prompt dic-
tates how the object should be placed in the scene. Place-
ment is often relative to an “anchor,” which is a named ob-
ject instance and is either available in the ground truth of
a scene graph, or is inferred at test-time. In practice, “lan-
guage constraints” capture both semantic and physical as-
pects of the placement. These language constraints are or-
ganized into three distinct groups:
Spatial constraints: These constraints specify the object’s
location relative to one or more scene anchors. This group
includes: (i) near and adjacent: the object is positioned
within a specified distance from an anchor. (ii) on: the ob-
ject should directly rest on top of an anchor. (iii) between:
the object must be placed between two anchors. (iv) above
and below: the object is located above or below an anchor.
Rotational constraint: This constraint focuses on the ori-
entation of the object relative to scene anchors. The object
is positioned so that it faces toward the anchor.

3



Visibility constraints: The object is positioned so that it
sits within the line-of-sight of an anchor, and can be visible
or not visible.

All placements should be physically plausible. Beyond
that, each example includes a combination of language con-
straints in the prompt. A candidate placement is considered
a valid placement if and only if it simultaneously satisfies
every constraint in that prompt.
Prompt creation: As a proxy for humans typing in desired
constraints, we create language prompts using a template-
based system, shown in the supplemental material. For each
of the language constraints, we have a set of predefined tem-
plate language sentences that describe it. We combine a ran-
dom sample of the constraints to get the final prompt. The
anchor objects are also randomly selected from the Scan-
Net annotations. We have a verification step where we dis-
card prompts that cannot be satisfied, since there is no valid
placement that follows it. This can happen if the selected
random constraints are too restrictive and incompatible, for
example: “Place the asset on the table and below the desk.”

3.2. Benchmark
Each benchmark example is composed of a 3D mesh of the
scene, the 3D asset, and the language prompt, which is com-
posed of one or more 3D language constraints. A method
for placement would take this triplet as input and predict at
least one placement, parameterized as a 3D translation vec-
tor t and a single rotation angle α that corresponds to the
yaw angle. We use “posed object” to refer to the asset af-
ter applying the predicted transformation. Our evaluation
protocol verifies whether the placement satisfies each 3D
constraint individually and all of them collectively.

3.2.1. Checking validity of each 3D constraint
We use a rule-based system to check whether a predicted
placement satisfies a 3D constraint. For the anchor objects,
we use their ground truth oriented bounding boxes provided
by ScanNet annotations. Since we consider a diversity of
constraints with distinct properties, we describe how the va-
lidity of each of them is evaluated. Most constraints will
depend on thresholds and parameters, to allow for small de-
viations. Please see supplemental material for more details.
Physical plausibility: We use Open3D [45] to check if the
mesh of the posed object intersects with the scene mesh.
Spatial constraints: For the near and adjacent constraints,
we compute the distance from the posed asset to the anchor
object. We check the on, above, and below relationships by
comparing the value of the z-coordinate of the placed object
with the z-coordinate of the anchor object. For the between
relationship, we check if the placed asset is close to a line
connecting the centers of the two anchor objects.
Rotational constraint: We compute a cone around the
frontal vector of the posed asset and check that the anchor
object intersects with that cone.

Visibility constraint: To check if the placed object is vis-
ible from a specified anchor, we render it together with the
scene from a camera centered at that anchor and facing the
object. We then check if any of the pixels in the rendered
image correspond to the asset. The asset is considered visi-
ble if any pixels correspond to it; otherwise, it is considered
not visible

3.2.2. Benchmark metrics
To quantitatively assess the performance of a placement al-
gorithm, we compute these metrics that capture the validity
of the constraints both overall and for each subgroup:
Global Constraint Accuracy: The percentage of all con-
straints (across all groups) that are correctly satisfied over
the entire dataset. It provides a holistic measure of the over-
all placement quality.
Complete Placement Constraint Success: The percentage
of perfect placements, where every constraint is satisfied. It
indicates the overall robustness of the placement method.
Subgroup Metrics: In addition to the overall metrics, we
report accuracies across constraint groups.

3.2.3. Benchmark statistics
The benchmark contains 3,300 evaluation examples, com-
bining a total of 142 different scenes from ScanNet [10]
and 20 different assets from the PartObjaverse-Tiny
dataset [40]. Statistics for the number of constraints and
type of constraints are shown in Table 1.

Constraints per sample # Type #
One 1,000 Spatial 3,679
Two 1,509 Rotational 991
Three or more 791 Visibility 970

Table 1. Benchmark statistics for the number of language con-
straints per benchmark sample and type of constraint. Note that
the physical plausibility is enforced for all examples, so it is not
counted as a constraint in this table.

3.3. Training dataset
Although our benchmark protocol allows offline method
evaluation, we need a practical lower computational-cost
approach to create a large-scale dataset for training, espe-
cially for obtaining the full set of valid placements.

Here we describe PlaceIt3D, our training dataset for
the task of guided placement. The dataset consists of
97,020 training examples, sourced from 565 distinct Scan-
Net scenes and 20 unique assets. It includes a total of
68,561 spatial constraints, 53,009 rotational constraints,
and 26,192 visibility constraints. Among these examples,
63,131 contain a single constraint, 23,420 have two con-
straints, and 10,469 include three or four constraints. Used
throughout this paper, this training dataset is a subset, for

4



3D Asset

A
ss

et
 

En
co

de
r

Sp
at

ia
l 

P
oo

lin
g

3D Scene

“Put the asset so that it is 
between the window and the 
television. It should be on the 

table.”

Sc
en

e
En

co
de

r

Trainable Queries	"

Positional Embedding

+

Size Embedding

!!

!"

"!#

"!$%

Q
-F

or
m

er
P
ro

je
ct

io
n

Se
lf 

A
tt

en
tio

n

C
ro

ss
 A

tt
en

tio
n

A
nc

ho
rs

 M
as

k 
H

ea
d

P
la

ce
m

en
t 

M
as

k 
H

ea
d

R
ot

at
io

n 
H

ea
d

[R
O

T
]

[A
N

C
]

[L
O

C
]

LL
M

…

co
nc

at
.

×	
%

MLP
!"

!!

!"

!!

!"

!!

concat.

!!

Figure 3. Method overview. A point encoder extracts features from the 3D scene, which are then complemented with positional embed-
dings. Spatial pooling reduces feature dimensions, and a Q-Former merges the pooled features with trainable queries Q (Section 4.1). The
asset is encoded into a single vector by using a pretrained asset encoder followed by max-pooling (Section 4.2). This vector together with
a size embedding is passed to a projection layer that aligns the features with the LLM space. The LLM take as input (i) the output of
the Q-Former, (ii) the text prompt, and (iii) the projected asset features and predicts three special tokens [ANC], [LOC] and [ROT]. A
transformer based decoder takes as input the features associated with the three special tokens and the pooled scene features and performs
a few self and cross attention operations (Section 4.3). Three heads produce the final outputs: Mloc the valid placement mask; Manc an
auxiliary mask that localizes the object anchors; and Mrot a mask indicating which rotation angles are valid at each location.

practical purposes, of the PlaceIt3D-Full corpus we are also
sharing. PlaceIt3D-Full has ∼4M examples: the 565 scenes
x 140 objects x 50 prompts.

Dataset parametrization We denote the point cloud of the
scene as X ∈ RN×6, where each point xi, i ∈ {0, ..., N −
1} contains the 3D position for that point, as well as color
information. Given a scene, an asset, and a prompt, we rep-
resent the set of valid ground truth placements for the asset
as a binary mask M defined over the point cloud of the
scene, associating a label mi ∈ {0, 1} to each 3D point
xi. For each point i with label mi = 1, i.e. a valid place-
ment, we also define a binary mask over a discretized set
of yaw angles indicating if the angle is valid for that spe-
cific location: αi = {αy

i ∈ {0, 1}|y = 0, ..., 7}, where each
y corresponds to a 45◦ interval. Note that there is a fixed
transform between the parametrizations used in the bench-
mark and the training dataset. While for the benchmark we
parametrize the position of the center of the asset, for the
training set, we consider contact points between the scene
geometry and the asset’s bottom surface.

Computing valid placement masks We create the valid
placement masks M by using a combination of the rule-
based system defined above and a few approximations
to make it more efficient. More details on the ap-
proximations are available in the supplemental material.
We treat each constraint independently, obtaining a valid
mask per constraint Mc with c ∈ C, where C =
{physical, spatial, rotational, visibility}. The final mask is

given by the intersection of all the constraints that apply to
that example, so

M =
⋂
c∈C

Mc. (1)

For the physical plausibility constraint we use a set of
heightmaps to capture the different horizontal surfaces of
the scene. We then compute the asset height and footprint
and, for each point on a horizontal surface, check if the
placement is valid. For the visibility constraint we use the
same procedure as the benchmark, but use two approxima-
tions for efficiency: the asset is replaced by its bounding
box, and a fixed rotation angle is used.

4. PlaceWizard: Method Description
Background. We briefly introduce Reason3D [17] as our
method builds upon it. Given a textual prompt and a colored
point cloud X ∈ RN×6 as input, Reason3D performs dense
3D grounding, finding all the points in the point cloud that
satisfy the prompt. The features FX ∈ RN×d, where d
is the feature dimension, extracted by a point encoder [35]
from the input point cloud are aggregated into superpoints
[20] obtaining superpoint features FS ∈ RM×d, with M ≪
N , reducing the overall complexity.

Next, the superpoint features Fs are projected into the
embedding space of an LLM via a Q-Former block [24].
This model updates the learnable query vectors Q, resulting
in Q′. From Q′ and the input text the LLM generates a
response containing two special tokens, namely [LOC] and

5



[SEG]. These tokens guide the model in two stages: coarse
localization followed by precise mask prediction.

In practice, the Reason3D method uses a single token,
[LOC], for datasets that contain small scenes, such as Scan-
Net, since hierarchical subdivision is not required. We will
describe their method using this simplified version.

Finally, the last-layer embeddings associated to [LOC]
are first projected via an MLP and then given as input
to the Mask Decoder, which performs cross-attention [37]
with Fs. The decoder produces an object-level binary seg-
mentation mask over superpoints, which is upsampled into
Mloc ∈ {0, 1}N to provide a segmentation mask on the full
point cloud.

Figure 3 provides an overview of our method. In the fol-
lowing subsections, we detail our approach and emphasize
the key modifications to the Reason3D architecture neces-
sary for addressing guided placement instead of standard
3D visual grounding.

4.1. Scene encoding
Similarly to Reason3D, we use the point encoder from [35]
to extract features FX ∈ RN×d from the 3D scene. We use
an additional positional embedding feature F pos

X ∈ RN×d∗
,

for points in the point cloud, encoding their location, which
is concatenated with the previous features.
Spatial pooling. Reason3D uses superpoints [20] to re-
duce computational complexity and memory usage by pool-
ing individual point features into a single feature per super-
point. While effective for their task, this coarse representa-
tion limits performance for our placement task.

For example, superpoints will generally cluster all points
belonging to horizontal or vertical surfaces –such as floors,
tabletops and walls– into single superpoints, which is
clearly undesirable for accurate 3D placement of assets. To
address this, we instead use uniform spatial pooling to ag-
gregate features. Specifically, we use farthest point sam-
pling [12] to select M centers and then assign points to their
nearest center using Euclidean distance. By doing so, our
method remains computationally tractable, while also being
able to predict with sufficient granularity for accurate asset
placement. This is shown in Table 2 in the comparison be-
tween row A and row B. See supplementary material for a
visualization.

Our spatially aggregated features FS are passed as input
to the Q-Former block [24], which also takes as input a set
of trainable queries and learns to project the features into
the LLM embedding space.

4.2. Asset encoding
When compared with other tasks, our language-guided
placement task has an additional input, the 3D asset point
cloud. We encode the asset using a pre-trained Point-BERT
encoder [41] trained on the Objaverse [11] dataset. This

encoder predicts a sequence of feature vectors that are max-
pooled to obtain a single feature embedding.

Encoding the scale of the input asset is essential to facil-
itate a valid placement. Since the asset encoder assumes a
normalized point cloud in a unit sphere, we separately en-
code the size of the asset by taking the asset’s dimensions in
the x, y, and z axes. The FA feature for the asset is a com-
bination of the asset encoding and scale embeddings and is
projected to the LLM space using an MLP.

4.3. Placement decoder
We instruct our LLM to output three special tokens, namely
a [LOC] token, an [ANC] token, and a [ROT] token. The
features associated with the three special tokens are passed
as input to the decoder, where they undergo a few self-
attention layers. These are followed by a few cross-attention
layers between the updated token features and the asset fea-
tures FA and the pooled scene features FS .

Each individual head takes the feature of the associated
token after attention, the asset feature FA, and the scene fea-
ture FS and predicts the corresponding output. The Place-
ment Mask Head takes the [LOC] token embedding and
predicts Mloc ∈ [0, 1]N , a mask over the scene point cloud
encoding the regions where the input asset can be placed
satisfying the input prompt. The Rotation Head takes the
[ROT] token embedding and predicts Mrot ∈ [0, 1]N×8

indicating for each point in the point cloud, the validity
of a discretized set of rotation angles. Finally, the An-
chors Mask Head takes the [ANC] token and predicts
Manc ∈ [0, 1]N , a mask encompassing the masks of all
the anchor objects. This is used only as an auxiliary task, to
help the network identifying anchors in the prompt.

4.4. Losses
We use a combination of Binary Cross Entropy (BCE) and
Dice [34] losses when comparing a ground truth mask M̄
with a predicted mask M, so

Lseg(M̄,M) = BCE(M̄,M) + Dice(M̄,M). (2)

The loss for the rotation prediction is given by

Lrot = BCE(M̄rot,Mrot), (3)

where M̄rot ∈ Mrot ∈ {0, 1}N×8 is the ground truth indi-
cator mask for valid rotation angles, per point in the scene
point cloud.

The loss for the LLM is a cross-entropy loss, compar-
ing the ground truth text Ȳ with the predicted text Y :
LL = CE(Ȳ , Y ). Note that the ground truth text Ȳ
for our task, follows a simple format, e.g. “Sure, it is
[LOC][ANC][ROT]”, since the LLM is not required to pre-
dict articulated responses or explain placement decisions.

6



Instead, the information useful for placement should be en-
coded in the embeddings for the special tokens. Finally, our
total loss is defined as

L = Lseg(M̄loc,Mloc)+Lrot+Lseg(M̄anc,Manc)+LL.
(4)

4.5. Inference
At inference time, our method takes the network predictions
for placement, Mloc, and rotation, Mrot, and extracts a sin-
gle valid placement by finding the point in the point cloud
with the maximum value in Mloc: x̂ = argmaxm∈Mloc

m.
We apply a fixed offset to point x̂, half the asset height, to
get the predicted 3D translation vector t̂. This is due to the
differences in parametrization between the training dataset
and the benchmark. To predict the rotation angle, we use
Mx̂

rot ∈ [0, 1]8, which encodes the validity of discretized
rotations for x̂. The predicted angle α̂ is obtained by taking
the argmax over this vector.

5. Experiments
We validate our method PlaceWizard for the task of
language-guided object placement. Naturally, we use the
benchmark described in Section 3.2.

Implementation details for our method are provided in
the supplemental material. Our metrics, discussed in de-
tail in Section 3.2.2, measure the validity of the predictions.
All values represent percentages, and higher is better on all
metrics.

5.1. Quantitative results
In the absence of a readily available language-guided place-
ment method, we implemented a baseline system by com-
bining an open-world grounding method, OpenMask3D
[36], with our rule-based system for asset placement, and
we compare it against our PlaceWizard on the benchmark.
Since OpenMask3D requires object queries, we use ground
truth anchor descriptions instead of the full placement in-
structions. Ground truth masks are used to locate the
floor (as OpenMask3D rarely predicts floor masks), while
other anchors are selected based on the highest similarity
score. Finally, our rule-based system places assets using
the detected anchor masks. Table 2 shows both compar-
isons to baselines and ablation results. PlaceWizard outper-
forms OpenMask3D+rules across all metrics. Additionally,
PlaceWizard’s end-to-end approach removes the need for
a rule-based system, which can be computationally expen-
sive for larger scenes. For instance, generating our training
dataset required approximately 10,000 single-CPU hours.

5.1.1. Ablations
Table 2 also shows results for different ablations of our
method. We start with an adaptation of the Reason3D [17]

model to our task. One by one, we incrementally modify it
using our novel components. Each row in the table intro-
duces a single new modification, as compared to the previ-
ous row. We evaluate and report the model’s performance
until we reach PlaceWizard, our final method. All models
are trained on our training dataset PlaceIt3D. For the meth-
ods that do not predict rotation (rows A, B, C, D, and E)
we set the predicted rotation angle to 0. We describe the
different variants below.
A. The asset dimensions are encoded in text and provided
as part of the prompt: “The asset dimensions are X Y Z cm”,
where X, Y, and Z are integer values in cm.
B. This variant uses our proposed uniform spatial pooling
approach instead of the original superpoints pooling.
C. Positional embedding features F pos

X for points in the
point cloud are added to the scene encoding.
D. We incorporate the asset encoder instead of only provid-
ing the asset dimensions in the text prompt to the LLM.
E. We introduce the anchor prediction auxiliary loss. In [1],
predicting anchor objects leads to better 3D visual ground-
ing. We find that this holds for our task as well.
F. The rotation prediction head is introduced, allowing the
model to predict not only the placements mask Mloc but
also Mrot.
G (Ours). This variant constitutes our final PlaceWizard
method. The asset feature FA is added as an extra input to
the placement decoder. We expect this integration to enable
the placement decoder to perform more effective reasoning
about the asset’s geometry relative to the scene geometry.

The results in Table 2 validate our design choices. Us-
ing spatial aggregation instead of superpoints improves over
all metrics (compare row B with row A). The inclusion of
the anchor prediction head as an auxiliary sub-task also im-
proves performance (row E vs row D). Finally, the use of
our rotation head combined with passing the asset encod-
ing as input to the decoder gives our final best-performing
method (row G, which we use in the qualitative results).

5.2. Qualitative Results
In Figure 4, we show the results of our method PlaceWizard
on benchmark examples, demonstrating its ability to follow
language instructions and satisfy constraints. While most
placements are accurate, some cases exhibit minor intersec-
tions with the scene mesh or constraint failures. We show
additional results in the supplementary material.

6. Limitations and Future Work
The formulation of our novel task currently has some limi-
tations. First, we only consider placement of objects on hor-
izontal surfaces. Further generalization would allow to de-
fine arbitrary contact points, unlocking new scenarios, e.g.
hanging a clock on a vertical wall. Second, our dataset and
method do not address the issue of “incorrect guidance”,

7



Method ablation Subgroup metrics Global metrics

Name
Spatial

aggregation
Pos.
emb.

Asset
encoder

Anchor
pred.

Rot
pred.

Decode
asset

Spatial Rotational
Global

constraint
accuracy

Complete
placement

success

Baseline — OpenMask3D [36] + rules 28.6 6.5 25.5 21.8
A [17] Superpoints – text – – – 37.5 6.6 40.6 18.1

B uniform – text – – – 45.6 7.0 46.8 22.5
C uniform ✓ text – – – 45.8 5.7 46.7 22.9
D uniform ✓ PointBert – – – 46.2 7.7 47.5 22.6
E uniform ✓ PointBert ✓ – – 53.6 7.3 52.0 27.8
F uniform ✓ PointBert ✓ ✓ – 50.8 9.5 50.3 26.7
G (ours) uniform ✓ PointBert ✓ ✓ ✓ 54.1 12.1 52.6 29.4

Table 2. Quantitative results: We compare our full method with variations where some components are removed. The results validate our
design choices, and they show improvements over OpenMask3D [36] with rule-based asset placement and Reason3D [17].

“Place the asset so that is visible from the door.” “Place the asset so that is hidden from the door.”

Set the asset so that it is placed on the floor 
and oriented towards the ottoman. Also, it 

should be between the desk and the piano.”

“Situate the asset so that it is near of the 
clothes and facing the sofa. Moreover, it  

shouldn’t be far from the desk. “Place the asset below the lamp.”

“Place the asset near the refrigerator 
and facing the microwave.”

Figure 4. Qualitative benchmark results. Colored highlights indicate anchors referenced in the textual prompts (predictions are generated
entirely from point clouds, with anchor information provided only as text). The asset position is marked with a yellow circle, and a yellow
arrow denotes the frontal orientation. Our method successfully follows language instructions and meets the specified constraints. The
top-right example illustrates a placement that satisfies constraints but slightly intersects with the scene mesh. The bottom-right example
demonstrates a failure case where one constraint is not met (highlighted in red).

i.e. what to do when the language guidance is inconsistent
with the scene. Despite these limitations, we believe that
our proposed dataset, benchmark and method will enable
further investigations in the area.

Our method can be considered a specialist model since

we only train and evaluate it on our task of guided place-
ment. We leave as future work the combination of our task
with a generalist model, so that the same model can be used
for other 3D understanding tasks, different from placement.

8



7. Conclusion
We introduced the novel task of language-guided object
placement in real 3D scenes, bridging natural language un-
derstanding with 3D spatial reasoning about both scenes
and assets. To facilitate research, we created both a bench-
mark and a large-scale dataset, explicitly designed to ac-
count for the inherent ambiguities of placement tasks,
where multiple valid solutions may exist. Additionally, we
proposed a proto-method for guided placement, building on
advances in 3D large language models (LLMs). Ablations
validated that key design choices have impact on the task.
We hope PlaceIt3D will make it easier to develop AIs with
human-like abilities to follow two-step instructions.

References
[1] Ahmed Abdelreheem, Kyle Olszewski, Hsin-Ying Lee, Pe-

ter Wonka, and Panos Achlioptas. Scanents3d: Exploit-
ing phrase-to-3d-object correspondences for improved visio-
linguistic models in 3d scenes. In WACV, 2024. 2, 7

[2] Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed
Elhoseiny, and Leonidas Guibas. Referit3d: Neural listeners
for fine-grained 3d object identification in real-world scenes.
In ECCV, 2020. 2

[3] Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki
Kawanabe. Scanqa: 3d question answering for spatial scene
understanding. In CVPR, 2022. 2

[4] Wenxiao Cai, Yaroslav Ponomarenko, Jianhao Yuan, Xiaoqi
Li, Wankou Yang, Hao Dong, and Bo Zhao. Spatialbot:
Precise spatial understanding with vision language models.
arXiv 2406.13642, 2024. 2

[5] Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa
Sadigh, Leonidas Guibas, and Fei Xia. SpatialVLM: Endow-
ing vision-language models with spatial reasoning capabili-
ties. In CVPR, 2024. 2

[6] Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner.
Scanrefer: 3d object localization in rgb-d scans using natural
language. 2020. 2

[7] Zhenyu Chen, Ali Gholami, Matthias Nießner, and Angel X
Chang. Scan2cap: Context-aware dense captioning in rgb-d
scans. In CVPR, 2021. 2

[8] An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Rui-
han Yang, Jan Kautz, Xiaolong Wang, and Sifei Liu. Spa-
tialRGPT: Grounded spatial reasoning in vision language
model. In NeurIPS, 2024. 2

[9] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
spatio-temporal convnets: Minkowski convolutional neural
networks. In CVPR, 2019. 2

[10] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, 2017. 2, 4

[11] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3d objects. In CVPR, 2022. 6

[12] Meng Han, Liang Wang, Limin Xiao, Hao Zhang, Chenhao
Zhang, Xiangrong Xu, and Jianfeng Zhu. Quickfps: Archi-
tecture and algorithm co-design for farthest point sampling
in large-scale point clouds. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2023. 6

[13] Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng,
Yilun Du, Zhenfang Chen, and Chuang Gan. 3D-LLM: In-
jecting the 3D world into large language models. In NeurIPS,
2023. 2

[14] Haifeng Huang, Zehan Wang, Rongjie Huang, Luping Liu,
Xize Cheng, Yang Zhao, Tao Jin, and Zhou Zhao. Chat-
scene: Bridging 3d scene and large language models with
object identifiers. In NeurIPS, 2023. 2

[15] Ian Huang, Yanan Bao, Karen Truong, Howard Zhou,
Cordelia Schmid, Leonidas Guibas, and Alireza Fathi. Fire-
Place: Geometric Refinements of LLM Common Sense Rea-
soning for 3D Object Placement. In CVPR, 2025. 3

[16] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser,
Matthias Nießner, and Leonidas J Guibas. Texturenet:
Consistent local parametrizations for learning from high-
resolution signals on meshes. In CVPR, 2019. 2

[17] Kuan-Chih Huang, Xiangtai Li, Lu Qi, Shuicheng Yan, and
Ming-Hsuan Yang. Reason3D: Searching and reasoning 3d
segmentation via large language model. In 3DV, 2025. 2, 5,
7, 8, 12, 13

[18] Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang,
Xuesong Niu, Tengyu Liu, Qing Li, and Siyuan Huang.
Sceneverse: Scaling 3d vision-language learning for
grounded scene understanding. In ECCV, 2024. 2

[19] Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui
Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning segmenta-
tion via large language model. In CVPR, 2024. 2

[20] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In
CVPR, 2018. 5, 6, 13

[21] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and
Chunyuan Li. Llava-onevision: Easy visual task transfer.
arXiv 2408.03326, 2024. 2

[22] Changyang Li, Wanwan Li, Haikun Huang, and Lap-Fai Yu.
Interactive augmented reality storytelling guided by scene
semantics. In SIGGRAPH, 2022. 2

[23] Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li,
Wei Li, Zejun Ma, and Chunyuan Li. Llava-next-interleave:
Tackling multi-image, video, and 3d in large multimodal
models. arXiv 2407.07895, 2024. 2

[24] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In ICML,
2023. 2, 5, 6

[25] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. In NeurIPS, 2024. 2

[26] Liu Liu, Zhenchen Liu, Bo Zhang, Jiangtong Li, Li Niu,
Qingyang Liu, and Liqing Zhang. Opa: object placement
assessment dataset. arXiv 2107.01889, 2021. 2

[27] Tiange Luo, Chris Rockwell, Honglak Lee, and Justin John-
son. Scalable 3d captioning with pretrained models. In
NeurIPS, 2023. 2

9



[28] Muzammal Naseer, Salman Khan, and Fatih Porikli. Indoor
scene understanding in 2.5/3d for autonomous agents: A sur-
vey. IEEE access, 2018. 2

[29] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 2

[30] Ram Ramrakhya, Aniruddha Kembhavi, Dhruv Batra, Zsolt
Kira, Kuo-Hao Zeng, and Luca Weihs. Seeing the unseen:
Visual common sense for semantic placement. In CVPR,
2024. 2

[31] Jonas Schult, Francis Engelmann, Alexander Hermans, Or
Litany, Siyu Tang, and Bastian Leibe. Mask3D: Mask trans-
former for 3d semantic instance segmentation. In ICRA,
2023. 2

[32] Aditya Sharma, Luke Yoffe, and Tobias Höllerer. Octo+:
A suite for automatic open-vocabulary object placement in
mixed reality. In AIXVR, 2024. 2

[33] R. Siegler, J. Saffran, E. Gershoff, N. Eisenberg, and J. De-
Loache. How Children Develop. Macmillan Learning, 2020.
1

[34] Carole Helene Sudre, Wenqi Li, Tom Kamiel Magda Ver-
cauteren, Sébastien Ourselin, and M. Jorge Cardoso. Gener-
alised dice overlap as a deep learning loss function for highly
unbalanced segmentations. In MICCAI workshop, 2017. 6

[35] Jiahao Sun, Chunmei Qing, Junpeng Tan, and Xiangmin Xu.
Superpoint transformer for 3d scene instance segmentation.
In AAAI, 2023. 5, 6

[36] Ayça Takmaz, Elisabetta Fedele, Robert W. Sumner, Marc
Pollefeys, Federico Tombari, and Francis Engelmann. Open-
Mask3D: Open-Vocabulary 3D Instance Segmentation. In
NeurIPS, 2023. 7, 8

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 6

[38] Tai Wang, Xiaohan Mao, Chenming Zhu, Runsen Xu,
Ruiyuan Lyu, Peisen Li, Xiao Chen, Wenwei Zhang, Kai
Chen, Tianfan Xue, Xihui Liu, Cewu Lu, Dahua Lin, and
Jiangmiao Pang. Embodiedscan: A holistic multi-modal 3d
perception suite towards embodied ai. In CVPR, 2024. 2

[39] Jianing Yang, Xuweiyi Chen, Nikhil Madaan, Madhavan
Iyengar, Shengyi Qian, David F. Fouhey, and Joyce Chai.
3d-grand: A million-scale dataset for 3d-llms with better
grounding and less hallucination. arXiv 2406.05132, 2024.
2

[40] Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu,
Xiaoyang Wu, Lam Edmund Y., Yan-Pei Cao, and Xihui
Liu. Sampart3d: Segment any part in 3d objects. arXiv
2411.07184, 2024. 2, 4

[41] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie
Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud
transformers with masked point modeling. In CVPR, 2022.
6

[42] Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay,
Ranjay Krishna, Adithyavairavan Murali, Arsalan Mousa-
vian, and Dieter Fox. Robopoint: A vision-language model
for spatial affordance prediction for robotics. In CoRL, 2024.
2

[43] Haochen Zhang, Nader Zantout, Pujith Kachana, Zongyuan
Wu, Ji Zhang, and Wenshan Wang. Vla-3d: A dataset for 3d
semantic scene understanding and navigation. In RSS Work-
shop, 2024. 2

[44] Hengshuang Zhao, Xiaohui Shen, Zhe Lin, Kalyan
Sunkavalli, Brian Price, and Jiaya Jia. Compositing-aware
image search. In ECCV, 2018. 2

[45] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv 1801.09847,
2018. 4

[46] Chenming Zhu, Tai Wang, Kai Chen, and Xihui Liu. Scan-
reason: Empowering 3d visual grounding with reasoning ca-
pabilities. In ECCV, 2024. 2

[47] Sijie Zhu, Zhe Lin, Scott Cohen, Jason Kuen, Zhifei Zhang,
and Chen Chen. Topnet: Transformer-based object place-
ment network for image compositing. In CVPR, 2023. 2

10



PlaceIt3D: Language-Guided Object Placement in Real 3D Scenes

Supplementary Material

8. Additional details on the training dataset

8.1. Training dataset creation
We give some details on the training set creation, particu-
larly how the physically plausible constraint and visibility
constraint are computed.

Spatial constraints Each constraint uses geometric crite-
ria on 3D oriented bounding boxes and is governed by the
following parameters. We use the same values both in the
training dataset and the evaluation benchmark:

• “near”: asset in a proximity of the anchor object. The
threshold distance is proportional to the size of the room
(1%).

• “adjacent”: asset close to the anchor object. We set a
tolerance distance of 3 cm.

• “above” / “below”: asset vertically aligned above / below
the anchor object. Vertical Intersection over Minimum
(IoM) >= 0.5 and a minimum of 1 cm above/below the
anchor.

• “on”: resting on top of the anchor object, considering
vertical stacking and size constraints: vertical IoM >=
0.5 and a tolerance for vertical distance of 1 cm.

• “between”: Determines if the asset object lies between
two anchor objects in both xy and z planes. Parameters:
between IoM (0.5) in projection planes (xy and z). Over-
lap threshold (0.3): maximum IoM that ensures the asset
does not overlap excessively with either object. Distance
threshold: filters anchors beyond 1.5 m

Rotational constraint. The “facing” constraint deter-
mines which objects an asset is oriented towards in a 3D
scene by evaluating directional alignment, proximity, and
spatial overlap. It uses the asset’s front direction to identify
candidate objects within its field of view. We use a max-
imum distance threshold of 2 meters, an angular threshold
of 30 degrees and an IoM for lateral overlap of 0.5.

Physically plausible constraint The first constraint that
we consider is whether an object can physically be placed
at a particular location in a scene. To compute valid place-
ments in a scene efficiently, we make use of a heightmap
based representation, where we raycast the mesh from
above using a grid of rays with a predefined resolution,
and store all points of intersection. Next, we create a set
of heightmaps, where each cell represents a different ray,
each layer represents a different intersection per ray, and

the value is the height of the intersection point. We con-
struct the first heightmap using the intersection points with
the minimum height per ray. Each subsequent heightmap
will contain either the next intersection point for each ray,
or if there are no remaining points for a cell, will con-
tain the maximum intersection point. Additionally, we ray-
cast each asset from above to obtain an asset heightmap
and 2D bounding box per possible rotation. Given these
heightmaps, we check for physical plausibility by:
• Extracting overlapping patches of the mesh heightmap,

with patch size equal to the asset bounding box
• Extract minimum height and maximum height of the

heightmap for each patch, using the asset heightmap to
generate a mask. If this differs by more than 10cm, this
point is not valid

• Check that the asset can also fit in the Z direction using
the next heightmap - is the asset height for this cell less
than the height of the next surface

If these 2 conditions are true, we deem a location to be phys-
ically plausible. Finally, we generate labels for the mesh
vertices by assigning them the labels of their nearest loca-
tion in the heightmap.

Visibility constraint Our visibility constraint determines
whether an asset is visible from a specific location in the
scene, which corresponds to one of the object anchors. To
evaluate this, we use mesh rendering. To assess visibility ef-
ficiently, we first place the asset in a physically feasible po-
sition. Instead of rendering the full asset mesh, we approx-
imate it using a simple cuboid with the same dimensions as
the asset bounding box, reducing computational overhead,
we also consider only 1 rotation for the asset. The virtual
camera’s position is then determined by computing the cen-
troid of the vertices associated with the anchor. The camera
center is set to the vertex within the anchor that is closest to
this centroid, and the camera is oriented to face the asset.

We then render the scene and check whether any pixels
from the asset’s bounding cuboid appear in the rendered im-
age. This process is repeated for all valid asset placements
across all scenes. The virtual camera locations correspond
to TVs, doors, and windows. When multiple instances of
the same object class exist in a scene, we select the largest
instance.

We use a virtual camera with a field of view (FOV) of
60◦ and we render images at a resolution of 64× 64 pixels.

In the benchmark, we follow the same procedure as
stated above for generating the training data with 2 dif-
ferences: we render the original asset mesh instead of the

11



Scene Original Superpoints Spatial Clustering

Figure 5. Comparison of our spatial pooling vs the superpoints used in [17]. Our regions are more local and more adequate to the task of
object placement.

cuboid and render images at a resolution of 256× 256 pix-
els.

8.2. Templates for prompts
We report the templates used to generate placement instruc-
tions.

relationships:
- name: plausible
templates:
- in a plausible location
- in a sensible location
- in a reasonable spot
- in a suitable position
- in a feasible area
- somewhere stable within the scene
- at a steady spot in the scene
- in a secure location within the scene
- in a firm position in the scene
- in an area that suits the scene’s layout

- name: adjacent
templates:
- adjacent to the {anchor class}
- next to the {anchor class}
- beside the {anchor class}
- right beside the {anchor class}
- alongside the {anchor class}
- abutting the {anchor class}

- name: between
templates:
- between the {anchor1 class} and the

{anchor2 class}
- in the space between the {anchor1 class}

and the {anchor2 class}
- positioned between the {anchor1 class} and

the {anchor2 class}
- in the middle of the {anchor1 class} and

the {anchor2 class}
- name: facing
templates:
- facing the {anchor class}
- directed at the {anchor class}

- pointing towards the {anchor class}
- oriented towards the {anchor class}
- looking at the {anchor class}
- angled toward the {anchor class}
- turned towards the {anchor class}

- name: near
templates:
- near the {anchor class}
- close to the {anchor class}
- in the vicinity of the {anchor class}
- not far from the {anchor class}
- within reach of the {anchor class}
- a short distance from the {anchor class}

- name: on
templates:
- on the {anchor class}
- resting on the {anchor class}
- placed on the {anchor class}
- sitting on the {anchor class}
- lying on the {anchor class}

- name: above
templates:
- above the {anchor class}
- over the {anchor class}
- higher than the {anchor class}
- up above the {anchor class}

- name: below
templates:
- below the {anchor class}
- under the {anchor class}
- beneath the {anchor class}
- underneath the {anchor class}
- lower than the {anchor class}
- situated under the {anchor class}
- right below the {anchor class}

- name: is_visible
templates:
- visible from the {anchor class}
- in view of the {anchor class}
- within sight of the {anchor class}
- seen from the {anchor class}
- not obstructing the view to the

{anchor class}

12



- keeping the view to the {anchor class}clear
- positioned to avoid blocking the

{anchor class}
- allowing an unobstructed view of the

{anchor class}
- name: not_visible
templates:
- not visible from the {anchor class}
- out of sight of the {anchor class}
- hidden from the {anchor class}
- obstructing the view to the {anchor class}
- blocking the view to the {anchor class}
- in the way of the {anchor class}
- preventing a clear view of the

{anchor class}

Dataset Examples In Figures 7 and 8, we provide exam-
ples from our proposed dataset.

9. PlaceWizard Implementation Details
We conduct all our experiments using eight NVIDIA Tesla
A100 GPUs, with a training batch size of 28 per single gpu.
Following Reason3D, we utilize the AdamW optimizer with
parameters β1 = 0.9 and β2 = 0.999, a weight decay of
0.05, and a linear warm-up strategy for the learning rate
during the initial 1000 steps gradually increasing it from
10−8 to 10−4 followed by a cosine decay schedule. We train
for 50 epochs. We also use a pretrained FlanT5XL model,
keeping most of its pre-trained weights frozen, except for
adapting the weights of the newly added tokens, as similarly
done in Reason3D. For spatial pooling, we employ 1024
groups for each ScanNet scan.

10. Visualization of superpoints
Figure 5 shows the difference between the superpoints [20]
used in Reason3D [17] and our proposed spatial pooling.
While [20] generates large clusters, such as for the floor,
our method produces clusters at a finer granularity.

11. Further Qualitative Results
In Figure 6 we show the confidence scores predicted by our
model for the spatial clusters in two example scenes from
our dataset.

13



“Situate the asset so 
that it is next to the 

cabinet”

“Position the asset 
such that it is pointing 
towards the tv stand.”

Figure 6. Heatmap visualization of the predicted confidence scores by our model for spatial clusters in two examples from our dataset,
across two scenes, given different assets and textual prompts. Warmer colors indicate higher confidence regions for asset placement, with
white representing the highest confidence.

14



“Ensure the asset 
is hidden from the 

window”

“Set the asset so 
that it is sitting 
on the table.”

“Arrange the asset 
so that it is in the 
space between the 
coffee table and the 

bag and situated 
under the fan.”

Figure 7. Examples from our proposed dataset illustrating prompts with different constraints, along with the corresponding placement
mask and a sample placed asset.

15



“Set the asset so that 
it is not far from the 

backpack and near the 
sofa.”

“Situate the asset so 
that it is between 
the desk and the 

door.”

“Ensure the asset 
is facing the tissue 

box”

Ensure the asset is 
at a steady spot in 

the scene

Figure 8. Examples from our proposed dataset illustrating prompts with different constraints, along with the corresponding placement
mask and a sample placed asset.

16


	Introduction
	Related Work
	Language-Guided 3D Object Placement
	Physical plausibility and language constraints
	Benchmark
	Checking validity of each 3D constraint
	Benchmark metrics
	Benchmark statistics

	Training dataset

	PlaceWizard: Method Description
	Scene encoding
	Asset encoding
	Placement decoder
	Losses
	Inference

	Experiments
	Quantitative results
	Ablations

	Qualitative Results

	Limitations and Future Work
	Conclusion
	Additional details on the training dataset
	Training dataset creation
	Templates for prompts

	PlaceWizard Implementation Details
	Visualization of superpoints
	Further Qualitative Results

